共查询到20条相似文献,搜索用时 15 毫秒
1.
The Neurospora VS ribozyme differs from other small, naturally occurring ribozymes in that it recognizes for trans cleavage or ligation a substrate that consists largely of a stem-loop structure. We have previously found that cleavage or ligation by the VS ribozyme requires substantial rearrangement of the secondary structure of stem-loop I, which contains the cleavage/ligation site. This rearrangement includes breaking the top base-pair of stem-loop I, allowing formation of a kissing interaction with loop V, and changing the partners of at least three other base-pairs within stem-loop I to adopt a conformation termed shifted. In the work presented, we have designed a binding assay and used mutational analysis to investigate the contribution of each of these structural changes to binding and ligation. We find that the loop I-V kissing interaction is necessary but not sufficient for binding and ligation. Constitutive opening of the top base-pair of stem-loop I has little, if any, effect on either activity. In contrast, the ability to adopt the shifted conformation of stem-loop I is a major determinant of binding: mutants that cannot adopt this conformation bind much more weakly than wild-type and mutants with a constitutively shifted stem-loop I bind much more strongly. These results implicate the adoption of the shifted structure of stem-loop I as an important process at the binding step in the VS ribozyme reaction pathway. Further investigation of features near the cleavage/ligation site revealed that sulphur substitution of the non-bridging phosphate oxygen atoms immediately downstream of the cleavage/ligation site, implicated in a putative metal ion binding site, significantly altered the cleavage/ligation equilibrium but did not perturb substrate binding significantly. This indicates that the substituted oxygen atoms, or an associated metal ion, affect a step that occurs after binding and that they influence the rates of cleavage and ligation differently. 相似文献
2.
The Neurospora VS ribozyme recognizes and cleaves a substrate RNA that contains a GC-rich stem loop. In contrast to most RNA secondary structures that are stable during tertiary or quaternary folding, this substrate undergoes extensive ribozyme-induced rearrangement in the presence of magnesium in which the base pairings of at least seven of the ten nucleotides in the stem are changed. This conformational switch is essential for catalytic activity with the wild-type substrate and creates a metal-binding secondary structure motif near the cleavage site. Base pair rearrangement is accompanied by bulging a cytosine from the middle of the stem, indicating that ribozymes may perform base flipping, an activity previously observed only with protein enzymes that modify DNA. 相似文献
3.
The solution structure of the VS ribozyme active site loop reveals a dynamic "hot-spot" 总被引:2,自引:0,他引:2
The VS ribozyme is the largest ribozyme in its class and is also the least structurally characterized thus far. The current working model of the VS ribozyme locates the active site in stem-loop VI. The solution structure of this active site loop was determined using high resolution NMR spectroscopy. The structure reveals that the ground-state conformation of the active site differs significantly from that determined previously from chemical structure probing and mutational analysis of the ribozyme in its active conformation, which contains several looped out bases. In contrast, the base-pairing scheme found for the isolated loop contains three mismatched base-pairs: an A+-C, a G-U wobble, and a sheared G-A base-pair and no looped out bases. Dynamics observed within the active site loop provide insight into the mechanism by which the RNA can rearrange its secondary structure into an "activated" conformation prior to cleavage. These findings lend support to the idea that RNA secondary structure is more fluid than once believed and that a better understanding of structure and dynamic features of ribozymes is required to unravel the intricacies of their catalytic abilities. 相似文献
4.
The VS ribozyme is a 154 nt self-cleaving RNA molecule that can be divided into a trans-acting five-helix ribozyme and stem-loop substrate. The structure of the ribozyme is organised by two three-way helical junctions, the structure of which has been determined by a combination of comparative gel electrophoresis and fluorescence resonance energy transfer experiments. From this, the overall global architecture of the ribozyme has been deduced. The substrate is then thought to dock into the cleft formed between helices II and VI, where it makes a close interaction with the loop containing A730. The A730 loop is the probable active site of the ribozyme, and A756 within it is a strong candidate to play a direct role in the transesterification chemistry, possibly by general acid-base catalysis. 相似文献
5.
Lipfert J Ouellet J Norman DG Doniach S Lilley DM 《Structure (London, England : 1993)》2008,16(9):1357-1367
We have used small-angle X-ray solution scattering to obtain ab initio shape reconstructions of the complete VS ribozyme. The ribozyme occupies an electron density envelope with an irregular shape, into which helical sections have been fitted. The ribozyme is built around a core comprising a near-coaxial stack of three helices, organized by two three-way helical junctions. An additional three-way junction formed by an auxiliary helix directs the substrate stem-loop, juxtaposing the cleavage site with an internal loop to create the active complex. This is consistent with the current view of the probable mechanism of trans-esterification in which adenine and guanine nucleobases contributed by the interacting loops combine in general acid-base catalysis. 相似文献
6.
We have used nucleotide analog interference mapping and site-specific substitution to determine the effect of 2′-deoxynucleotide substitution of each nucleotide in the VS ribozyme on the self-cleavage reaction. A large number of 2′-hydroxyls (2′-OHs) that contribute to cleavage activity of the VS ribozyme were found distributed throughout the core of the ribozyme. The locations of these 2′-OHs in the context of a recently developed helical orientation model of the VS ribozyme suggest roles in multi-stem junction structure, helix packing, internal loop structure and catalysis. The functional importance of three separate 2′-OHs supports the proposal that three uridine turns contribute to local and long-range tertiary structure formation. A cluster of important 2′-OHs near the loop that is the candidate region for the active site and one very important 2′-OH in the loop that contains the cleavage site confirm the functional importance of these two loops. A cluster of important 2′-OHs lining the minor groove of stem–loop I and helix II suggests that these regions of the backbone may play an important role in positioning helices in the active structure of the ribozyme. 相似文献
7.
Compensatory mutations in RNA are generally regarded as those that maintain base pairing, and their identification forms the basis of phylogenetic predictions of RNA secondary structure. However, other types of compensatory mutations can provide higher-order structural and evolutionary information. Here, we present a helix-length compensation study for investigating structure-function relationships in RNA. The approach is demonstrated for stem-loop I and stem-loop V of the Neurospora VS ribozyme, which form a kissing-loop interaction important for substrate recognition. To rapidly characterize the substrate specificity (k(cat)/K(M)) of several substrate/ribozyme pairs, a procedure was established for simultaneous kinetic characterization of multiple substrates. Several active substrate/ribozyme pairs were identified, indicating the presence of limited substrate promiscuity for stem Ib variants and helix-length compensation between stems Ib and V. 3D models of the I/V interaction were generated that are compatible with the kinetic data. These models further illustrate the adaptability of the VS ribozyme architecture for substrate cleavage and provide global structural information on the I/V kissing-loop interaction. By exploring higher-order compensatory mutations in RNA our approach brings a deeper understanding of the adaptability of RNA structure, while opening new avenues for RNA research. 相似文献
8.
To identify nucleotides in or near the active site, we have used a circularly permuted version of the VS ribozyme capable of cleavage and ligation to incorporate a single photoactive nucleotide analog, 4-thio- uridine, immediately downstream of the scissile bond. Exposure to UV light produced two cross-linked RNAs, in which the 4-thio-uridine was cross-linked to A756 in the 730 loop of helix VI. The cross-links formed only under conditions that support catalytic activity, suggesting that they reflect functionally relevant conformations of the RNA. One of the cross-linked RNAs contains a lariat, indicative of intramolecular cross-linking in the ligated RNA; the other is a branched molecule in which the scissile phosphodiester bond is cleaved, but occupies the same site in the ribozyme-substrate complex. These are the two forms of the RNA expected to be the ground state structures on either side of the transition state. This localization of the active site is consistent with previous mutational, biochemical and biophysical data, and provides direct evidence that the cleavage site in helix I interacts with the 730 loop in helix VI. 相似文献
9.
A guanine (G638) within the substrate loop of the VS ribozyme plays a critical role in the cleavage reaction. Replacement by any other nucleotide results in severe impairment of cleavage, yet folding of the substrate is not perturbed, and the variant substrates bind the ribozyme with similar affinity, acting as competitive inhibitors. Functional group substitution shows that the imino proton on the N1 is critical, suggesting a possible role in general acid-base catalysis, and this in accord with the pH dependence of the reaction rate for the natural and modified substrates. We propose a chemical mechanism for the ribozyme that involves general acid-base catalysis by the combination of the nucleobases of guanine 638 and adenine 756. This is closely similar to the probable mechanism of the hairpin ribozyme, and the active site arrangements for the two ribozymes appear topologically equivalent. This has probably arisen by convergent evolution. 相似文献
10.
The VS ribozyme catalyses the site-specific cleavage of a phosphodiester linkage by a transesterification reaction that entails the attack of the neighbouring 2'-oxygen with departure of the 5'-oxygen. We have previously suggested that the A730 loop is an important component of the active site of the ribozyme, and that A756 is especially important in the cleavage reaction. Functional group modification experiments reported here indicate that the base of A756 is more important than its ribose for catalysis. A number of changes to the base, including complete ablation, lead to cleavage rates that are reduced 1000-fold, while removal of the 2'-hydroxyl group from the ribose results in tenfold slower cleavage. 2-Aminopurine fluorescence experiments indicate that this 2'-hydroxyl group is important for the structure of the A730 loop. Catalytic activity is especially sensitive to changes involving the exocyclic amine of A756; by contrast, the cleavage activity is only weakly sensitive to modification at the 7-position of the purine nucleus. These results suggest that the Watson-Crick edge of the adenine base is important in ribozyme function. We sought to test the possibility of a direct role of the nucleobase in the chemistry of the cleavage reaction. Addition of imidazole base in the medium failed to restore the activity of a ribozyme from which the nucleobase of A756 was removed. However, no restoration was obtained with exogenous adenine base either, indicating that the cavity that might result from ablation of the base was closed. 相似文献
11.
The core of the VS ribozyme comprises five helices, that act either in cis or in trans on a stem-loop substrate to catalyse site-specific cleavage. The structure of the 2-3-6 helical junction indicates that a cleft is formed between helices II and VI that is likely to serve as a receptor for the substrate. Detailed analysis of sequence variants suggests that the base bulges of helices II and VI play an architectural role. By contrast, the identity of the nucleotides in the A730 loop is very important for ribozyme activity. The base of A756 is particularly vital, and substitution by any other nucleotide or ablation of the base leads to a major reduction in cleavage rate. However, variants of A756 bind substrate efficiently, and are not defective in global folding. These results suggest that the A730 loop is an important component of the active site of the ribozyme, and that A756 could play a key role in catalysis. 相似文献
12.
The VS ribozyme acts as a very efficient ligase in trans when the 5' cleavage product is prevented from dissociation by an extended helix Ia in the substrate. Provided that the length of this helix is >or=10 bp, the substrate becomes approximately 80% ligated by the ribozyme acting in trans. Most of the nucleotides that have been shown to be important for cleavage are similarly important for ligation, including the critical A756 of the active site. The exception to this is C755. The variant ribozyme C755A has almost normal cleavage activity, whereas the rate of ligation is reduced 70-fold. It is therefore likely that this nucleotide plays a specific role in the organization of the termini of the ligation substrates. We have found that the rate of the trans ligation reaction depends on pH, corresponding to the protonation/deprotonation of a group with a pK(A) of 5.6. A model is suggested whereby the approach to equilibrium is catalyzed by the ribozyme catalyzing the ligation reaction in its deprotonated state (rate 1.05 min(-1)) and the cleavage reaction in its protonated state (rate 0.18 min(-1)). A756 is a candidate for the nucleobase undergoing protonation/deprotonation. 相似文献
13.
Bouchard P Lacroix-Labonté J Desjardins G Lampron P Lisi V Lemieux S Major F Legault P 《RNA (New York, N.Y.)》2008,14(4):736-748
Substrate recognition by the VS ribozyme involves a magnesium-dependent loop/loop interaction between the SLI substrate and the SLV hairpin from the catalytic domain. Recent NMR studies of SLV demonstrated that magnesium ions stabilize a U-turn loop structure and trigger a conformational change for the extruded loop residue U700, suggesting a role for U700 in SLI recognition. Here, we kinetically characterized VS ribozyme mutants to evaluate the contribution of U700 and other SLV loop residues to SLI recognition. To help interpret the kinetic data, we structurally characterized the SLV mutants by NMR spectroscopy and generated a three-dimensional model of the SLI/SLV complex by homology modeling with MC-Sym. We demonstrated that the mutation of U700 by A, C, or G does not significantly affect ribozyme activity, whereas deletion of U700 dramatically impairs this activity. The U700 backbone is likely important for SLI recognition, but does not appear to be required for either the structural integrity of the SLV loop or for direct interactions with SLI. Thus, deletion of U700 may affect other aspects of SLI recognition, such as magnesium ion binding and SLV loop dynamics. As part of our NMR studies, we developed a convenient assay based on detection of unusual (31)P and (15)N N7 chemical shifts to probe the formation of U-turn structures in RNAs. Our model of the SLI/SLV complex, which is compatible with biochemical data, leads us to propose novel interactions at the loop I/loop V interface. 相似文献
14.
J E Olive D M De Abreu T Rastogi A A Andersen A K Mittermaier T L Beattie R A Collins 《The EMBO journal》1995,14(13):3247-3251
Several examples of inhibition of the function of a ribozyme or RNA-protein complex have shown that certain antibiotics can interact specifically with RNA. There are, however, few examples of antibiotics that have a positive, rather than a negative, effect on the function of an RNA. We have found that micromolar concentrations of viomycin, a basic, cyclic peptide antibiotic of the tuberactinomycin group, enhance the cleavage of a ribozyme derived from Neurospora VS RNA. Viomycin decreases by an order of magnitude the concentration of magnesium required for cleavage. It also stimulates an otherwise insignificant transcleavage reaction by enhancing interactions between RNA molecules. The ability of viomycin to enhance some RNA-mediated reactions but inhibit others, including translation and Group I intron splicing, demonstrates the potential for natural selection by small molecules during evolution in the 'RNA world' and may have broader implications with respect to ribozyme expression and activity in contemporary cells. 相似文献
15.
Many RNAs contain tertiary interactions that contribute to folding the RNA into its functional 3D structure. In the VS ribozyme, a tertiary loop-loop kissing interaction involving stem-loops I and V is also required to rearrange the secondary structure of stem-loop I such that nucleotides at the base of stem I, which contains the cleavage-ligation site, can adopt the conformation required for activity. In the current work, we have used mutants that constitutively adopt the catalytically permissive conformation to search for additional roles of the kissing interaction in vitro. Using mutations that disrupt or restore the kissing interaction, we find that the kissing interaction contributes ~1000-fold enhancement to the rates of cleavage and ligation. Large Mg(2+)-dependent effects on equilibrium were also observed: in the presence of the kissing interaction cleavage is favored >10-fold at micromolar concentrations of Mg(2+); whereas ligation is favored >10-fold at millimolar concentrations of Mg(2+). In the absence of the kissing interaction cleavage exceeds ligation at all concentrations of Mg(2+). These data provide evidence that the kissing interaction strongly affects the observed cleavage and ligation rate constants and the cleavage-ligation equilibrium of the ribozyme. 相似文献
16.
Desjardins G Bonneau E Girard N Boisbouvier J Legault P 《Nucleic acids research》2011,39(10):4427-4437
The Neurospora VS ribozyme is a small nucleolytic ribozyme with unique primary, secondary and global tertiary structures, which displays mechanistic similarities to the hairpin ribozyme. Here, we determined the high-resolution NMR structure of a stem-loop VI fragment containing the A730 internal loop, which forms part of the active site. In the presence of magnesium ions, the A730 loop adopts a structure that is consistent with existing biochemical data and most likely reflects its conformation in the VS ribozyme prior to docking with the cleavage site internal loop. Interestingly, the A730 loop adopts an S-turn motif that is also present in loop B within the hairpin ribozyme active site. The S-turn appears necessary to expose the Watson-Crick edge of a catalytically important residue (A756) so that it can fulfill its role in catalysis. The A730 loop and the cleavage site loop of the VS ribozyme display structural similarities to internal loops found in the active site of the hairpin ribozyme. These similarities provided a rationale to build a model of the VS ribozyme active site based on the crystal structure of the hairpin ribozyme. 相似文献
17.
Mutational, kinetic, and chemical modification experiments show that one of the three-way helical junctions in the Neurospora VS ribozyme contains a uridine turn that is important for organizing the functional three-dimensional structure of this junction. Disruption of the uridine turn disrupts the structure of the junction and decreases the self-cleavage activity of the ribozyme; however, substitution of the uridine turn with a variety of different hairpins, thereby transforming the three-way junction into a four-way junction, maintains catalytic activity. Chemical modification structure probing reveals that both the native junction and the hairpin-containing junction support the same tertiary interactions required elsewhere in the ribozyme for catalysis. These observations show that functionally equivalent three-dimensional RNA structures can be built from different secondary structure elements. 相似文献
18.
We have investigated the effects of Co(NH3)6(3+), an analog of hexahydrated Mg2+, on folding and catalysis of the Neurospora VS ribozyme. Most of the metal ion-induced changes detected by chemical modification structure probing in either metal ion are similar, but occur at approximately 33-fold lower concentrations of Co(NH3)6(3+) than Mg2+. However, Co(NH3)6(3+) is not as effective at inducing two functionally important structural changes: stabilizing the pseudoknot interaction between loops I and V, and rearranging the secondary structure of helix Ib. Comparison of the folding of the precursor and the downstream cleavage product, which lacks helix Ia, shows that helix Ia inhibits stable pseudoknot formation and rearrangement of helix Ib. The VS ribozyme does not self-cleave with Co(NH3)6(3+) as the sole polyvalent cation; however, mixed-metal kinetic experiments show that Co(NH3)6(3+) does not inhibit Mg2+-induced self-cleavage. In contrast, at sub-saturating concentrations of Mg2+, Co(NH3)6(3+) increases the rate of Mg2+-induced self-cleavage, indicating that Co(NH3)6(3+) contributes to the functionally relevant folding of the VS ribozyme. 相似文献
19.
A long-range pseudoknot is required for activity of the Neurospora VS ribozyme. 总被引:2,自引:0,他引:2 下载免费PDF全文
Four small RNA self-cleaving domains, the hammerhead, hairpin, hepatitis delta virus and Neurospora VS ribozymes, have been identified previously in naturally occurring RNAs. The secondary structures of these ribozymes are reasonably well understood, but little is known about long-range interactions that form the catalytically active tertiary conformations. Our previous work, which identified several secondary structure elements of the VS ribozyme, also showed that many additional bases were protected by magnesium-dependent interactions, implying that several tertiary contacts remained to be identified. Here we have used site-directed mutagenesis and chemical modification to characterize the first long-range interaction identified in VS RNA. This interaction contains a 3 bp pseudoknot helix that is required for tertiary folding and self-cleavage activity of the VS ribozyme. 相似文献
20.
The global structure of the hammerhead ribozyme was determined in the absence of Mg(2+) by solution NMR experiments. The hammerhead ribozyme motif forms a branched structure consisting of three helical stems connected to a catalytic core. The (1)H-(15)N and (1)H-(13)C residual dipolar couplings were measured in a set of differentially (15)N/(13)C-labeled ribozymes complexed with an unlabeled noncleavable substrate. The residual dipolar couplings provide orientation information on both the local and the global structure of the molecule. Analysis of the residual dipolar couplings demonstrated that the local structure of the three helical stems in solution is well modeled by an A-form conformation. However, the global structure of the hammerhead in solution in the absence of Mg(2+) is not consistent with the Y-shaped conformation observed in crystal structures of the hammerhead. The residual dipolar couplings for the helical stems were combined with standard NOE and J coupling constant NMR data from the catalytic core. The NOE data show formation of sheared G-A base pairs in domain 2. These NMR data were used to determine the global orientation of the three helical stems in the hammerhead. The hammerhead forms a rather extended structure under these conditions with a large angle between stems I and II ( approximately 153 degrees ), a smaller angle between stems II and III ( approximately 100 degrees ), and the smallest angle between stems I and III ( approximately 77 degrees ). The residual dipolar coupling data also contain information on the dynamics of the molecule and were used here to provide qualitative information on the flexibility of the helical domains in the hammerhead ribozyme-substrate complex. 相似文献