首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1. The action of the venom of the wasp Campsomeris sexmaculata on the insect CNS has been studied using the cercal nerve-giant interneuron preparation of the sixth abdominal ganglion of the cockroach. 2. The venom blocks synaptic transmission either transiently (at low concentration) or for a long time (at higher concentration), and causes a permanent depolarization of the neuron with a delay. 3. The venom does not affect directly the axonal excitability.  相似文献   

2.
1. The venom of the solitary scoliid wasp Colpa interrupta (F.) shows a kinin-activity, when tested on a cascade of mammalian smooth muscle preparations, and, in addition, a contraction of the rat colon. 2. The venom also irreversibly blocks the nicotinic synaptic transmission from the cercal nerve to a giant interneuron in the sixth abdominal ganglion of the cockroach, Periplaneta americana. 3. The same activities have been found within one HPLC fraction. 4. However, rechromatography of this fraction resulted in four subfractions being active on smooth muscles. 5. One fraction caused contraction of the colon, three other fractions contained kinin-activity. 6. Only the most active kinin fraction blocked synaptic transmission in the insect CNS. 7. This fraction contained threonine-bradykinin. 8. Synthetic Thr-bradykinin causes irreversible presynaptic activation-induced block of transmission in the insect CNS.  相似文献   

3.
This paper provides answers to the questions which of the toxins present in the venom of the wasp Philanthus triangulum may be responsible for the previously reported blockage of transmission through the sixth abdominal ganglion of the cockroach, and whether this may occur by block of synaptic transmission or by affecting axonal exitability. In current clamp experiments the crude venom induces a slight depolarization of the membrane of the giant axon from the sixth abdominal ganglion of the cockroach and a small and irreversible decrease in the amplitude of the action potential. These marginal effects are not seen with relatively high concentrations of the philanthotoxins β-PTX and δ-PTX. It appears that neither the crude venom nor the toxins significantly affect the excitability of the cockroach giant axon. At a concentration of 20 μg ml?1 δ-PTX causes a slowly reversible block of synaptic transmission from the cercal nerve XI to a giant interneuron without any change in resting membrane potential, whereas β-PTX is inactive. Iontophoretically evoked acetylcholine potentials of the giant neuron are more sensitive to δ-PTX than excitatory postsynaptic potentials. This suggests that the toxin acts on the postsynaptic membrane.  相似文献   

4.
The wasp Ampulex compressa injects venom directly into the prothoracic ganglion of its cockroach host to induce a transient paralysis of the front legs. To identify the biochemical basis for this paralysis, we separated venom components according to molecular size and tested fractions for inhibition of synaptic transmission at the cockroach cercal-giant synapse. Only fractions in the low molecular weight range (<2 kDa) caused synaptic block. Dabsylation of venom components and analysis by HPLC and MALDI-TOF-MS revealed high levels of GABA (25 mM), and its receptor agonists beta-alanine (18 mM), and taurine (9 mM) in the active fractions. Each component produces transient block of synaptic transmission at the cercal-giant synapse and block of efferent motor output from the prothoracic ganglion, which mimics effects produced by injection of whole venom. Whole venom evokes picrotoxin-sensitive chloride currents in cockroach central neurons, consistent with a GABAergic action. Together these data demonstrate that Ampulex utilizes GABAergic chloride channel activation as a strategy for central synaptic block to induce transient and focal leg paralysis in its host.  相似文献   

5.
1. The neurotoxic action of the venom of the ponerine ant, Paraponera clavata, was studied using a cascade of mammalian smooth muscle preparations and a preparation for investigating transmission from fibres of the cercal nerve to a giant interneuron in the sixth abdominal ganglion of the cockroach. 2. The venom contains three toxic fractions that block synaptic transmission in the insect central nervous system. 3. Two of these fractions have agonistic action on mammalian smooth muscle preparations. 4. One of the later fractions was characterized pharmacologically as containing a kinin. 5. The other, and most active neurotoxic fraction, was rechromatographed, resulting in the purification of a peptide of 25 amino acids residues, called poneratoxin, PoTX: Phe-Leu-Pro-Leu-Leu-Ile-Leu-Gly-Ser-Leu-Leu-Met-Thr-Pro-Pro-Val-Ile-Gln- Ala-Ile-His-Asp-Ala-Gln-Arg-HN2.  相似文献   

6.
The data presented here describe neurophysiological experiments addressing the question of cellular mechanisms underlying the total paralysis of locomotor behavior in crickets occurring after being stung by females of the digger wasp species Liris niger. The Liris venom effects have been studied by both in vivo recordings from identified neurons of the well-described giant fiber pathway and in vitro recordings from cultured neurons isolated from the terminal ganglion of crickets. The total paralysis of the prey is characterized by a general block of action potential generation as well as by a block of synaptic transmission. Intracellular recordings from neurons in intact ganglia under single electrode voltage-clamp conditions, as well as whole-cell patch-clamp recordings from cultured cricket neurons consistently show that the block of action potential generation by the Liris venom is due to a block of voltage-gated sodium inward currents in neurons of the stung ganglia. Furthermore, our data provide evidence that the Liris venom also blocks calcium currents in identified neurosecretory neurons. On the other hand, outward currents are not affected by the Liris venom. The in vitro recordings suggest that the Liris venom contains active venom components, which, at least for the observed block of inward currents, do not require a metabolic modification. Because venom application does not affect the ACh-induced EPSPs in giant interneurons, the Liris venom does not seem to influence the postsynaptic ACh receptors. The possible pre- and postsynaptic sites of venom action and the functional consequences on synaptic transmission within the giant fiber system are discussed.  相似文献   

7.
Degeneration of synaptic and axonal compartments of neurons is an early event contributing to the pathogenesis of many neurodegenerative diseases, but the underlying molecular mechanisms remain unclear. Here, we demonstrate the effectiveness of a novel "top-down" approach for identifying proteins and functional pathways regulating neurodegeneration in distal compartments of neurons. A series of comparative quantitative proteomic screens on synapse-enriched fractions isolated from the mouse brain following injury identified dynamic perturbations occurring within the proteome during both initiation and onset phases of degeneration. In silico analyses highlighted significant clustering of proteins contributing to functional pathways regulating synaptic transmission and neurite development. Molecular markers of degeneration were conserved in injury and disease, with comparable responses observed in synapse-enriched fractions isolated from mouse models of Huntington's disease (HD) and spinocerebellar ataxia type 5. An initial screen targeting thirteen degeneration-associated proteins using mutant Drosophila lines revealed six potential regulators of synaptic and axonal degeneration in vivo. Mutations in CALB2, ROCK2, DNAJC5/CSP, and HIBCH partially delayed injury-induced neurodegeneration. Conversely, mutations in DNAJC6 and ALDHA1 led to spontaneous degeneration of distal axons and synapses. A more detailed genetic analysis of DNAJC5/CSP mutants confirmed that loss of DNAJC5/CSP was neuroprotective, robustly delaying degeneration in axonal and synaptic compartments. Our study has identified conserved molecular responses occurring within synapse-enriched fractions of the mouse brain during the early stages of neurodegeneration, focused on functional networks modulating synaptic transmission and incorporating molecular chaperones, cytoskeletal modifiers, and calcium-binding proteins. We propose that the proteins and functional pathways identified in the current study represent attractive targets for developing therapeutics aimed at modulating synaptic and axonal stability and neurodegeneration in vivo.  相似文献   

8.
The wasp Ampulex compressa injects venom directly into the prothoracic ganglion of its cockroach host to induce a transient paralysis of the front legs. To identify the biochemical basis for this paralysis, we separated venom components according to molecular size and tested fractions for inhibition of synaptic transmission at the cockroach cercal‐giant synapse. Only fractions in the low molecular weight range (<2 kDa) caused synaptic block. Dabsylation of venom components and analysis by HPLC and MALDI‐TOF‐MS revealed high levels of GABA (25 mM), and its receptor agonists β‐alanine (18 mM), and taurine (9 mM) in the active fractions. Each component produces transient block of synaptic transmission at the cercal‐giant synapse and block of efferent motor output from the prothoracic ganglion, which mimics effects produced by injection of whole venom. Whole venom evokes picrotoxin‐sensitive chloride currents in cockroach central neurons, consistent with a GABAergic action. Together these data demonstrate that Ampulex utilizes GABAergic chloride channel activation as a strategy for central synaptic block to induce transient and focal leg paralysis in its host. © 2006 Wiley Periodicals, Inc. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006  相似文献   

9.
More than ten bradykinin-related peptides and their cDNAs have been identified from amphibians, but their genes are unknown. In present study, four cDNAs encoding one, two, four and six copies of bradykinin-related peptides were cloned from the frog (Odorrana grahami) skin cDNA library, respectively. Three bradykinin-related peptides (bradykinin, Thr6-bradykinin, Leu5Thr6-bradykinin) were deduced from these four cDNA sequences. Based on the cDNA sequence, the gene sequence encoding an amphibian bradykinin-related peptide from O. grahami was determined. It is composed of 7481 base pairs including two exons and two introns. The first exon codes signal peptide and the second exon codes acidic spacer peptide and Thr6-bradykinin. The promoter region of the bradykinin gene contains several putative recognition sites for nuclear factors, such as SRY, GATA-1, LYF-1, DeltaE, CDXA, NKX-2.5, MIF1 and S8. The current work may facilitate to understand the regulation and possible functions of amphibian skin bradykinin-related peptides.  相似文献   

10.
The form and time sequence of spikes generated by orthodromic, antidromic, and direct stimulation and during spontaneous activity have been studied with intracellular electrodes simultaneously introduced in the soma and in different parts of the axon of the giant nerve cell of Aplysia. Evidence was obtained that under normal conditions of excitability, the spike originates at some distance from the soma in an axonal region with a higher excitability surpassing that of the surrounding membranes. Between the trigger zone and the soma is situated a region of transitional excitability where the conduction of the spike towards the soma may be blocked at a functionally determined and variable locus. The cell body is electrically excitable, but has the highest threshold of all parts of the neuron. The inactivation or even the removal of the cell body does not suppress synaptic transmission.  相似文献   

11.
Two structurally similar and highly active glycopeptides have been isolated from extracts of yellow jacket venom sacs by ion-exchange and droplet countercurrent chromatography procedures. Vespulakinin 1 (heptadecapeptide) and vespulakinin 2 (pentadecapeptide) are both highly basic and contain the nonapeptide bradykinin at their carboxy termini. Most unique is the presence of carbohydrate. Vespulakinins are the first reported naturally occurring glycopeptide derivatives of bradykinin and the first reported vasoactive glycopeptides.  相似文献   

12.
Presynaptic GABAA receptors modulate synaptic transmission in several areas of the CNS but are not known to have this action in the cerebral cortex. We report that GABAA receptor activation reduces hippocampal mossy fibers excitability but has the opposite effect when intracellular Cl- is experimentally elevated. Synaptically released GABA mimics the effect of exogenous agonists. GABAA receptors modulating axonal excitability are tonically active in the absence of evoked GABA release or exogenous agonist application. Presynaptic action potential-dependent Ca2+ transients in individual mossy fiber varicosities exhibit a biphasic dependence on membrane potential and are altered by GABAA receptors. Antibodies against the alpha2 subunit of GABAA receptors stain mossy fibers. Axonal GABAA receptors thus play a potentially important role in tonic and activity-dependent heterosynaptic modulation of information flow to the hippocampus.  相似文献   

13.
Two novel bradykinin-related peptides (Ala3,Thr6)-bradykinin and (Val1,Thr3,Thr6)-bradykinin, were identified by a systematic sequencing study of peptides in the defensive skin secretion of the yellow-bellied toad, Bombina variegata. These peptides are the first amphibian skin bradykinins to exhibit amino acid substitutions at the Pro3 position of the bradykinin nonapeptide. Previously reported bradykinins from other Bombina species were not detected. Respective precursor cDNAs, designated BVK-1 and BVK-2, respectively, were cloned from a skin library by 3'- and 5'-RACE reactions. BVK-1 contained an open-reading frame of 97 amino acids encoding a single copy of (Ala3,Thr6)-bradykinin and similarly, the open-reading frame of BVK-2 consisted of 96 amino acids encoding a single copy of (Val1,Thr3,Thr6)-bradykinin. Synthetic replicates of each novel bradykinin were found to be active on mammalian arterial and small intestinal smooth muscle preparations. The structural diversity of bradykinins in amphibian defensive skin secretions may be related to defence against specific predators.  相似文献   

14.
1. In co-operation with colleagues in Europe, Japan and the U.S.A., 25 years of research in Amsterdam have provided new views on the way some hymenopteran insects incapacitate their prey by a diversity of neurotoxins, resulting in block of synaptic transmission in CNS or neuromuscular junctions, or affecting voltage dependent phenomena in nerve and muscle fibers. 2. Nicotinic synaptic transmission in the insect CNS is irreversibly blocked at the presynaptic side by kinins, or reversibly and postsynaptically blocked by philanthotoxins. 3. Glutamatergic neuromuscular transmission is reversibly blocked by philanthotoxins at the pre- and/or postsynaptic side. 4. A presynaptic block of neuromuscular transmission was found with the Microbracon toxins. 5. An irreversible deactivation, without paralysis, of cockroaches is caused by a sting of Ampulex compressa into the suboesophageal ganglion. 6. Poneratoxin, a 25 amino acid residue polypeptide, isolated from an ant venom, is the first described hymenopteran neurotoxin affecting excitability of nerve and muscle fibres by changing the kinetics of the voltage-dependent sodium channel.  相似文献   

15.
Chen T  Orr DF  Bjourson AJ  McClean S  O'Rourke M  Hirst DG  Rao P  Shaw C 《Peptides》2002,23(9):1547-1555
Bradykinin and (Thr(6))-bradykinin have been identified in the defensive skin secretion of the fire-bellied toad, Bombina orientalis. The homologous cDNAs for both peptides were cloned from a skin library using a 3'- and 5'-RACE strategy. Kininogen-1 (BOK-1) contained an open-reading frame of 167 amino acid residues encoding four repeats of bradykinin, and kininogen-2 (BOK-2) contained an open-reading frame of 161 amino acid residues encoding two repeats of (Thr(6))-bradykinin. Alignment of both precursor nucleotide and amino acid sequences revealed a high degree of structural similarity. These amphibian skin kininogens/preprobradykinins are not biologically analogous to mammalian kininogens.  相似文献   

16.
Modulation of Ca(2+) channels by neurotransmitters provides critical control of neuronal excitability and synaptic strength. Little is known about regulation of the Ca(2+) efflux pathways that counterbalance Ca(2+) influx in neurons. We demonstrate that bradykinin and ATP significantly facilitate removal of action potential-induced Ca(2+) loads by stimulating plasma membrane Ca(2+)-ATPases (PMCAs) in rat sensory neurons. This effect was mimicked in the soma and axonal varicosities by phorbol esters and was blocked by antagonists of protein kinase C (PKC). Reduced expression of PMCA isoform 4 abolished, and overexpression of isoform 4b enhanced, PKC-dependent facilitation of Ca(2+) efflux. This acceleration of PMCA4 underlies the shortening of the action potential afterhyperpolarization produced by activation of bradykinin and purinergic receptors. Thus, isoform-specific modulation of PMCA-mediated Ca(2+) efflux represents a novel mechanism to control excitability in sensory neurons.  相似文献   

17.
Kainate receptors alter the excitability of mossy fiber axons and have been reported to play a role in the induction of long-term potentiation (LTP) at mossy fiber synapses in the hippocampus. These previous studies have relied primarily on the use of compounds whose selectivity is unclear. In this report, we investigate short- and long-term facilitation of mossy fiber synaptic transmission in kainate receptor knockout mice. We find that LTP is reduced in mice lacking the GluR6, but not the GluR5, kainate receptor subunit. Additionally, short-term synaptic facilitation is impaired in GluR6 knockout mice, suggesting that kainate receptors act as presynaptic autoreceptors on mossy fiber terminals to facilitate synaptic transmission. These data demonstrate that kainate receptors containing the GluR6 subunit are important modulators of mossy fiber synaptic strength.  相似文献   

18.
The venom of V. cincta contains acetylcholine (ACh), histamine and 5-hydroxytryptamine (5-HT). Blockers of these agonists did not block completely the hypotensive and smooth muscle contractile activity of venom. On smooth muscle, there was a residual slow contraction. The active substance which produced this slow contraction was separated by solvent extraction, gel filtration and TLC. The purified material (which has been provisionally designated "Vecikinin") lowered cat, rat and guinea pig blood pressure, increased amplitude of cardiac contraction, and increased capillary permeability. Vecikinin contracted several smooth muscle preparations (rat uterus, rat ascending colon, guinea pig ileum, guinea pig colon and rat ileum), while relaxing rat duodenum. Its contractile activity was not lost on boiling, but acid or alkali-boiling reduced its contractile activity. It was inactivated on incubation with chymotrypsin and carboxypeptidase but not with trypsin, pepsin or leucine aminopeptidase. It is a peptide, appears to be of low molecular weight, and could be distinguished from substance P, angiotensin, bradykinin and hornet or wasp kinin.  相似文献   

19.
Short term administration of the venoms of the snakes Naja haje, Naja nigricollis, and Cerastes vipera and of the scorpion Leiurus quinquestriatus on the mitotic index of the duodenal mucosal cells of the white rat, Rattus rattus, has been studied. All the venoms increased the number of dividing cells of the duodenal mucosa significantly. Naja haje crude venom was fractionated into three fractions. Fraction I had no effect on the mitotic index whereas fractions II and III increased it significantly. Treatment of rats with Naja haje venom fractions II and III after blocking the histamine or the serotonin receptors did not affect the stimulatory action of the two venom fractions on the mitotic index, which it increased significantly. It was suggested that the venoms of Naja haje, Naja nigricollis, Cerastes vipera, and Leiurus quinquestriatus and Naja haje venom fractions possessed a mitogenic activity. Fraction II of Naja haje venom acted through both the muscarinic and adrenergic receptors while fraction III acted on the adrenergic ones.  相似文献   

20.
Genetic ablation of the histamine producing enzyme histidine decarboxylase (HDC) leads to alteration in exploratory behaviour and hippocampus-dependent learning. We investigated how brain histamine deficiency in HDC knockout mice (HDC KO) affects hippocampal excitability, synaptic plasticity, and the expression of histamine receptors. No significant alterations in: basal synaptic transmission, long-term potentiation (LTP) in the Schaffer collateral synapses, histamine-induced transient changes in the CA1 pyramidal cell excitability, and the expression of H1 and H2 receptor mRNAs were found in hippocampal slices from HDC KO mice. However, when compared to WT mice, HDC KO mice demonstrated: 1. a stronger enhancement of LTP by histamine, 2. a stronger impairment of LTP by ammonia, 3. no long-lasting potentiation of population spikes by histamine, 4. a decreased expression of H3 receptor mRNA, and 5. less potentiation of population spikes by H3 receptor agonism. Parallel measurements in the hypothalamic tuberomamillary nucleus, the origin of neuronal histamine, demonstrated an increased expression of H3 receptors in HDC KO mice without any changes in the spontaneous firing of “histaminergic” neurons without histamine and their responses to the H3 receptor agonist (R)-α-methylhistamine. We conclude that the absence of neuronal histamine results in subtle changes in hippocampal synaptic transmission and plasticity associated with alteration in the expression of H3 receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号