首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proteins destined for the nucleus contain nuclear localization sequences, short stretches of amino acids responsible for targeting them to the nucleus. We show that the first 29 amino acids of GAL4, a yeast DNA-binding protein, function efficiently as a nuclear localization sequence when fused to normally cytoplasmic invertase, but not when fused to Escherichia coli beta-galactosidase. Moreover, the nuclear localization sequence from simian virus 40 T antigen functions better when fused to invertase than when fused to beta-galactosidase. A single amino acid change in the T-antigen nuclear localization sequence inhibits the nuclear localization of simian virus 40-invertase and simian virus 40-beta-galactosidase in Saccharomyces cerevisiae. From these results, we conclude that the relative ability of a nuclear localization sequence to act depends on the protein to which it is linked.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
《The Journal of cell biology》1992,117(5):1067-1076
Capping protein binds the barbed ends of actin filaments and nucleates actin filament assembly in vitro. We purified capping protein from Saccharomyces cervisiae. One of the two subunits is the product of the CAP2 gene, which we previously identified as the gene encoding the beta subunit of capping protein based on its sequence similarity to capping protein beta subunits in chicken and Dictyostelium (Amatruda, J. F., J. F. Cannon, K. Tatchell, C. Hug, and J. A. Cooper. 1990. Nature (Lond.) 344:352-354). Yeast capping protein has activity in critical concentration and low-shear viscometry assays consistent with barbed- end capping activity. Like chicken capping protein, yeast capping protein is inhibited by PIP2. By immunofluorescence microscopy yeast capping protein colocalizes with cortical actin spots at the site of bud emergence and at the tips of growing buds and shmoos. In contrast, capping protein does not colocalize with actin cables or with actin rings at the site of cytokinesis.  相似文献   

13.
Guanine nucleotide exchange factor activation of Rho G-proteins is critical for cytoskeletal reorganization. In the yeast Saccharomyces cerevisiae, the sole guanine nucleotide exchange factor for the Rho G-protein Cdc42p, Cdc24p, is essential for its site-specific activation. Several mammalian exchange factors have been shown to oligomerize; however, the function of this homotypic interaction is unclear. Here we show that Cdc24p forms oligomers in yeast via its catalytic Dbl homology domain. Mutation of residues critical for Cdc24p oligomerization also perturbs the localization of this exchange factor yet does not alter its catalytic activity in vitro. Chemically induced oligomerization of one of these oligomerization-defective mutants partially restored its localization to the bud tip and nucleus. Furthermore, chemically induced oligomerization of wild-type Cdc24p does not affect in vitro exchange factor activity, yet it results in a decrease of activated Cdc42p in vivo and the presence of Cdc24p in the nucleus at all cell cycle stages. Together, our results suggest that Cdc24p oligomerization regulates Cdc42p activation via its localization.  相似文献   

14.
15.
16.
17.
18.
19.
The regions of the large subunit ribosomal protein L25 from Saccharomyces cerevisiae responsible for nuclear localization of the protein were identified by constructing fusion genes encoding various segments of L25 linked to the amino terminus of beta-galactosidase. Indirect immunofluorescence of yeast cells expressing the fusions demonstrated that amino acid residues 1 to 17 as well as 18 to 41 of L25 promote import of the reporter protein into the nucleus. Both nuclear localization signal (NLS) sequences appear to consist of two distinct functional parts: one showed relatively weak nuclear targeting activity, whereas the other considerably enhances this activity but does not promote nuclear import by itself. Microinjection of in vitro prepared intact and N-terminally truncated L25 into Xenopus laevis oocytes demonstrated that the region containing the two NLS sequences is indeed required for efficient nuclear localization of the ribosomal protein. This conclusion was confirmed by complementation experiments using a yeast strain that conditionally expresses wild-type L25. The latter experiments also indicated that amino acid residues 1 to 41 of L25 are required for full functional activity of yeast 60 S ribosomal subunits. Yeast cells expressing forms of L25 that lack this region are viable, but show impaired growth and a highly abnormal cell morphology.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号