首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Pathways for regulation of signaling by transforming growth factor-β family members are poorly understood at present. The best genetically characterized member of this family is encoded by the Drosophila gene decapentaplegic (dpp), which is required for multiple events during fly development. We describe here the results of screens for genes required to maximize dpp signaling during embryonic dorsal-ventral patterning. Screens for genetic interactions in the zygote have identified an allele of tolloid, as well as two novel alleles of screw, a gene recently shown to encode another bone morphogenetic protein-like polypeptide. Both genes are required for patterning the dorsalmost tissues of the embryo. Screens for dpp interactions with maternally expressed genes have identified loss of function mutations in Mothers against dpp and Medea. These mutations are homozygous pupal lethal, engendering gut defects and severely reduced imaginal disks, reminiscent of dpp mutant phenotypes arising during other dpp-dependent developmental events. Genetic interaction phenotypes are consistent with reduction of dpp activity in the early embryo and in the imaginal disks. We propose that the novel screw mutations identified here titrate out some component(s) of the dpp signaling pathway. We propose that Mad and Medea encode rate-limiting components integral to dpp pathways throughout development.  相似文献   

2.
3.
We have identified the molecular lesions associated with six point mutations in the Drosophila TGF-β homologue decapentaplegic (dpp). The sites of these mutations define residues within both the pro and ligand regions that are essential for dpp function in vivo. While all of these mutations affect residues that are highly conserved among TGF-β superfamily members, the phenotypic consequences of the different alleles are quite distinct. Through an analysis of these mutant phenotypes, both in cuticle preparations and with molecular probes, we have assessed the functional significance of specific residues that are conserved among the different members of the superfamily. In addition, we have tested for conditional genetic interactions between the different alleles. We show that two of the alleles are temperature sensitive for the embyronic functions of dpp, such that these alleles are not only embryonic viable as homozygotes but also partially complement other dpp hypomorphs at low temperatures. Our results are discussed with regard to in vitro mutagenesis data on other TGF-β-like molecules, as well as with regard to the regulation of dpp cell signaling in Drosophila.  相似文献   

4.
5.
We identified Drosophila Smurf (DSmurf) as a negative regulator of signaling by the BMP2/4 ortholog DPP during embryonic dorsal-ventral patterning. DSmurf encodes a HECT domain ubiquitin-protein ligase, homologous to vertebrate Smurf1 and Smurf2, that binds the Smad1/5 ortholog MAD and likely promotes its proteolysis. The essential function of DSmurf is restricted to its action on the DPP pathway. DSmurf has two distinct, possibly mechanistically separate, functions in controlling DPP signaling. Prior to gastrulation, DSmurf mutations cause a spatial increase in the DPP gradient, as evidenced by ventrolateral expansion in expression domains of target genes representing all known signaling thresholds. After gastrulation, DSmurf mutations cause a temporal delay in downregulation of earlier DPP signals, resulting in a lethal defect in hindgut organogenesis.  相似文献   

6.
Hedgehog signaling is required for many aspects of development in vertebrates and invertebrates. Misregulation of the Hedgehog pathway causes developmental abnormalities and has been implicated in certain types of cancer. Large-scale genetic screens in zebrafish have identified a group of mutations, termed you-class mutations, that share common defects in somite shape and in most cases disrupt Hedgehog signaling. These mutant embryos exhibit U-shaped somites characteristic of defects in slow muscle development. In addition, Hedgehog pathway mutations disrupt spinal cord patterning. We report the positional cloning of you, one of the original you-class mutations, and show that it is required for Hedgehog signaling in the development of slow muscle and in the specification of ventral fates in the spinal cord. The you gene encodes a novel protein with conserved EGF and CUB domains and a secretory pathway signal sequence. Epistasis experiments support an extracellular role for You upstream of the Hedgehog response mechanism. Analysis of chimeras indicates that you mutant cells can appropriately respond to Hedgehog signaling in a wild-type environment. Additional chimera analysis indicates that wild-type you gene function is not required in axial Hedgehog-producing cells, suggesting that You is essential for transport or stability of Hedgehog signals in the extracellular environment. Our positional cloning and functional studies demonstrate that You is a novel extracellular component of the Hedgehog pathway in vertebrates.  相似文献   

7.
Li J  Li WX 《Genetics》2003,164(1):247-258
Overactivation of receptor tyrosine kinases (RTKs) has been linked to tumorigenesis. To understand how a hyperactivated RTK functions differently from wild-type RTK, we conducted a genome-wide systematic survey for genes that are required for signaling by a gain-of-function mutant Drosophila RTK Torso (Tor). We screened chromosomal deficiencies for suppression of a gain-of-function mutation tor (tor(GOF)), which led to the identification of 26 genomic regions that, when in half dosage, suppressed the defects caused by tor(GOF). Testing of candidate genes in these regions revealed many genes known to be involved in Tor signaling (such as those encoding the Ras-MAPK cassette, adaptor and structural molecules of RTK signaling, and downstream target genes of Tor), confirming the specificity of this genetic screen. Importantly, this screen also identified components of the TGFbeta (Dpp) and JAK/STAT pathways as being required for Tor(GOF) signaling. Specifically, we found that reducing the dosage of thickveins (tkv), Mothers against dpp (Mad), or STAT92E (aka marelle), respectively, suppressed tor(GOF) phenotypes. Furthermore, we demonstrate that in tor(GOF) embryos, dpp is ectopically expressed and thus may contribute to the patterning defects. These results demonstrate an essential requirement of noncanonical signaling pathways for a persistently activated RTK to cause pathological defects in an organism.  相似文献   

8.
9.
R E Nicholls  W M Gelbart 《Genetics》1998,149(1):203-215
Signaling molecules of the transforming growth factor beta (TGF-beta) family contribute to numerous developmental processes in a variety of organisms. However, our understanding of the mechanisms which regulate the activity of and mediate the response to TGF-beta family members remains incomplete. The product of the Drosophila decapentaplegic (dpp) locus is a well-characterized member of this family. We have taken a genetic approach to identify factors required for TGF-beta function in Drosophila by testing for genetic interactions between mutant alleles of dpp and a collection of chromosomal deficiencies. Our survey identified two deficiencies that act as maternal enhancers of recessive embryonic lethal alleles of dpp. The enhanced individuals die with weakly ventralized phenotypes. These phenotypes are consistent with a mechanism whereby the deficiencies deplete two maternally provided factors required for dpp''s role in embryonic dorsal-ventral pattern formation. One of these deficiencies also appears to delete a factor required for dpp function in wing vein formation. These deficiencies remove material from the 54F-55A and 66B-66C polytene chromosomal regions, respectively. As neither of these regions has been previously implicated in dpp function, we propose that each of the deficiencies removes a novel factor or factors required for dpp function.  相似文献   

10.
The Drosophila decapentaplegic (dpp) gene, a member of the tranforming growth factor β superfamily of growth factors, is critical for specification of the embryonic dorsal-ventral axis, for proper formation of the midgut, and for formation of Drosophila adult structures. The Drosophila tolloid gene has been shown to genetically interact with dpp. The genetic interaction between tolloid and dpp suggests a model in which the tolloid protein participates in a complex containing the DPP ligand, its protease serving to activate DPP, either directly or indirectly. We report here the identification and cloning of another Drosophila member of the tolloid/bone morphogenic protein (BMP) 1 family, tolkin, which is located 700 bp 5' to tolloid. Its overall structure is like tolloid, with an N-terminal metalloprotease domain, five complement subcomponents C1r/C1s, Uegf, and Bmp1 (CUB) repeats and two epidermal growth factor (EGF) repeats. Its expression pattern overlaps that of tolloid and dpp in early embryos and diverges in later stages. In larval tissues, both tolloid and tolkin are expressed uniformly in the imaginal disks. In the brain, both tolloid and tolkin are expressed in the outer proliferation center, whereas tolkin has another stripe of expression near the outer proliferation center. Analysis of lethal mutations in tolkin indicate it is vital during larval and pupal stages. Analysis of its mutant phenotypes and expression patterns suggests that its functions may be mostly independent of tolloid and dpp.  相似文献   

11.
K Simin  E A Bates  M A Horner  A Letsou 《Genetics》1998,148(2):801-813
TGF-beta (transforming growth factor-beta-) mediated signal transduction affects growth and patterning in a variety of organisms. Here we report a genetic characterization of the Drosophila punt gene that encodes a type II serine/threonine kinase TGF-beta/Dpp (Decapentaplegic) receptor. Although the punt gene was originally identified based on its requirement for embryonic dorsal closure, we have documented multiple periods of punt activity throughout the Drosophila life cycle. We demonstrate that potentially related embryonic punt phenotypes, defects in dorsoventral patterning and dorsal closure, correspond to distinct maternal and zygotic requirements for punt. In addition, we document postembryonic requirements for punt activity. The tight correspondence between both embryonic and postembryonic loss-of-function punt and dpp phenotypes implicates a role for Punt in mediating virtually all Dpp signaling events in Drosophila. Finally, our comparison of punt homoallelic and heteroallelic phenotypes provides direct evidence for interallelic complementation. Taken together, these results suggest that the Punt protein functions as a dimer or higher order multimer throughout the Drosophila life cycle.  相似文献   

12.
Bone morphogenetic proteins (BMPs), a subgroup of the transforming growth factor (TGF)-β family, transduce their signal through multiple components downstream of their receptors. Even though the components involved in the BMP signaling pathway have been intensely studied, many molecules mediating BMP signaling remain to be addressed. To identify novel components that participate in BMP signaling, RNA interference (RNAi)-based screening was established by detecting phosphorylated Mad (pMad) in Drosophila S2 cells. Ter94, a member of the family of AAA ATPases, was identified as a novel mediator of BMP signaling, which is required for the phosphorylation of Mad in Drosophila S2 cells. Moreover, the mammalian orthlog of Ter94 valosin-containing protein (VCP) plays a critical role in the BMP-Smad1/5/8 signaling pathway in mammalian cells. Genetic evidence suggests that Ter94 is involved in the dorsal-ventral patterning of the Drosophila early embryo through regulating decapentaplegic (Dpp)/BMP signals. Taken together, our data suggest that Ter94/VCP appears to be an evolutionarily conserved component that regulates BMP-Smad1/5/8 signaling.  相似文献   

13.
14.
15.
Large-scale screens for female-sterile mutations have revealed genes required maternally for establishment of the body axes in the Drosophila embryo. Although it is likely that the majority of components involved in axis formation have been identified by this approach, certain genes have escaped detection. This may be due to (1) incomplete saturation of the screens for female-sterile mutations and (2) genes with essential functions in zygotic development that mutate to lethality, precluding their identification as female-sterile mutations. To overcome these limitations, we performed a genetic mosaic screen aimed at identifying new maternal genes required for early embryonic patterning, including zygotically required ones. Using the Flp-FRT technique and a visible germline clone marker, we developed a system that allows efficient screening for maternal-effect phenotypes after only one generation of breeding, rather than after the three generations required for classic female-sterile screens. We identified 232 mutants showing various defects in embryonic pattern or morphogenesis. The mutants were ordered into 10 different phenotypic classes. A total of 174 mutants were assigned to 86 complementation groups with two alleles on average. Mutations in 45 complementation groups represent most previously known maternal genes, while 41 complementation groups represent new loci, including several involved in dorsoventral, anterior-posterior, and terminal patterning.  相似文献   

16.
Kim HS  Park KH  Kim SA  Wen J  Park SW  Park B  Gham CW  Hyung WJ  Noh SH  Kim HK  Song SY 《Mutation research》2005,578(1-2):187-201
Since the underlying mechanism for the high incidence of aneuploidy in gastric cancer has not clarified, we screened 49 gastric cancers and five gastric cancer cell lines for mutations in the mitotic spindle checkpoint genes, Bub1 and Mad2, and we analyzed the functional consequences of these mutations. The presence of mutations in Bub1 and Mad2 coding sequences was primarily detected by RT-PCR-SSCP and subsequently confirmed by automatic sequencing of either the RT-PCR products and/or the PCR products from genomic DNA. Mad2 was mutated in 44.9% of gastric cancer tissues and one gastric cancer cell line, N87, but not Bub1. Of these, three mutational hotspots at codons 156, 165 and 182 were identified. Mutations at codons 165 and 182 led to amino acid substitutions, whereas the mutation at codon 156 was a silent one. Overexpression of mutant Mad2 in HeLa cells led to the appearance of aneuploid cells in the presence of nocodazole, and this indicated that these mutations caused a defect in MAD2 protein. Wild type and mutant MAD2 protein displayed distinct mobility on two-dimensional gel electrophoresis. Novel mutational hotspots in human Mad2 genes were discovered for the gastric cancers and these mutations caused the functional defects in the spindle checkpoint suggesting that these mutations might be involved in the development and progression of gastric cancer.  相似文献   

17.
Spinal Muscular Atrophy (SMA), a recessive hereditary neurodegenerative disease in humans, has been linked to mutations in the survival motor neuron (SMN) gene. SMA patients display early onset lethality coupled with motor neuron loss and skeletal muscle atrophy. We used Drosophila, which encodes a single SMN ortholog, survival motor neuron (Smn), to model SMA, since reduction of Smn function leads to defects that mimic the SMA pathology in humans. Here we show that a normal neuromuscular junction (NMJ) structure depends on SMN expression and that SMN concentrates in the post-synaptic NMJ regions. We conducted a screen for genetic modifiers of an Smn phenotype using the Exelixis collection of transposon-induced mutations, which affects approximately 50% of the Drosophila genome. This screen resulted in the recovery of 27 modifiers, thereby expanding the genetic circuitry of Smn to include several genes not previously known to be associated with this locus. Among the identified modifiers was wishful thinking (wit), a type II BMP receptor, which was shown to alter the Smn NMJ phenotype. Further characterization of two additional members of the BMP signaling pathway, Mothers against dpp (Mad) and Daughters against dpp (Dad), also modify the Smn NMJ phenotype. The NMJ defects caused by loss of Smn function can be ameliorated by increasing BMP signals, suggesting that increased BMP activity in SMA patients may help to alleviate symptoms of the disease. These results confirm that our genetic approach is likely to identify bona fide modulators of SMN activity, especially regarding its role at the neuromuscular junction, and as a consequence, may identify putative SMA therapeutic targets.  相似文献   

18.
19.
We have isolated mutations in the Drosophila melanogaster gene glass bottom boat (gbb), which encodes a TGF-beta signaling molecule (formerly referred to as 60A) with highest sequence similarity to members of the bone morphogenetic protein (BMP) subgroup including vertebrate BMPs 5-8. Genetic analysis of both null and hypomorphic gbb alleles indicates that the gene is required in many developmental processes, including embryonic midgut morphogenesis, patterning of the larval cuticle, fat body morphology, and development and patterning of the imaginal discs. In the embryonic midgut, we show that gbb is required for the formation of the anterior constriction and for maintenance of the homeotic gene Antennapedia in the visceral mesoderm. In addition, we show a requirement for gbb in the anterior and posterior cells of the underlying endoderm and in the formation and extension of the gastric caecae. gbb is required in all the imaginal discs for proper disc growth and for specification of veins in the wing and of macrochaete in the notum. Significantly, some of these tissues have been shown to also require the Drosophila BMP2/4 homolog decapentaplegic (dpp), while others do not. These results indicate that signaling by both gbb and dpp may contribute to the development of some tissues, while in others, gbb may signal independently of dpp.  相似文献   

20.
A previous genetic analysis of a reporter gene carrying a 375-bp region from a dpp intron (dppMX-lacZ) revealed that the Wingless and Dpp pathways are required to activate dpp expression in posterior spiracle formation. Here we report that within the dppMX region there is an enhancer with binding sites for TCF and Mad that are essential for activating dppMX expression in posterior spiracles. There is also a binding site for Brinker likely employed to repress dppMX expression. This combinatorial enhancer may be the first identified with the ability to integrate temporally distinct positive (TCF and Mad) and negative (Brinker) inputs in the same cells. Cuticle studies on a unique dpp mutant lacking this enhancer showed that it is required for viability and that the Filzkorper are U-shaped rather than straight. Together with gene expression data from these mutants and from brk mutants, our results suggest that there are two rounds of Dpp signaling in posterior spiracle development. The first round is associated with dorsal-ventral patterning and is necessary for designating the posterior spiracle field. The second is governed by the combinatorial enhancer and begins during germ band retraction. The second round appears necessary for proper spiracle internal morphology and fusion with the remainder of the tracheal system. Intriguingly, several aspects of dpp posterior spiracle expression and function are similar to demonstrated roles for Wnt and BMP signaling in proximal-distal outgrowth of the mammalian embryonic lung.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号