首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To determine the methylation pattern of c-Ha-ras oncogene in prostatic tissue and to identify possible changes of methylation associated with cancer, high molecular weight DNA was extracted from 7 normal and 6 carcinomatous human prostates. Analysis of the samples was performed by cleaving DNA with the restriction endonucleases Msp I, Hpa II and Cfo I, and by Southern hybridizing the DNA digests with the 32P-labelled c-Ha-ras (pT24-C3) probe. Several discrete fragments were obtained with Hpa II and Cfo I digestion while the Msp I pattern showed fewer and smaller bands. Therefore, c-Ha-ras appears to be partially methylated. While a considerable polymorphism of the sequence 5'-CCGG-3' was observed at several Msp I sites in all cases, no significant differences could be evidenced in the methylation patterns of normal and neoplastic prostatic DNA samples extracted and purified from each patient.  相似文献   

2.
HLA-DR antigens are expressed as differentiation markers in certain human leukemias. To investigate whether DNA methylation plays a role in expression of DR genes in leukemia, we analyzed methylation patterns of the DR-alpha and D/DR-beta genes in the DR antigen-positive and -negative B-cell lines, in normal adults and in chronic lymphocytic leukemia (CLL) patients using Southern blot hybridization of DNA digested with Msp I and Hpa II. The DR-alpha and D/DR-beta genes of a DR antigen positive B-cell line, T5-1, were heavily methylated, while those of DR antigen-negative variant, 6.1.6, were hypomethylated. Blood cells collected from four normal adults contained different levels of DR-alpha and D/DR-beta mRNAs, but their relative amounts were about the same among the individuals. By contrast, the relative amounts of these mRNAs in CLL cells varied widely, indicating aberrant expression of one or both of these genes in CLL. The DR-alpha gene in four normal adults and six CLL patients produced only a 3 kb hybridizable band after Msp I digestion. Normal adult DR-alpha genes were resistant to Hpa II digestion, suggesting that all Hpa II sites are methylated. In contrast, digestion of CLL DNA with Hpa II yielded various bands of larger sizes which differed among the CLL patients, suggesting that Hpa II sites are differentially methylated in the CLL DNA. In the case of D/DR-beta genes, normal adult DNA gave Msp I bands which were slightly polymorphic among four individuals tested. In contrast, CLL DNA showed a high degree of restriction fragment length polymorphism (RFLP) on Msp I digestion. We speculate that the high RFLPs in the CLL DNA may result from differential methylation in CpG clusters in the D/DR-beta genes, and that this characteristic may be of use for diagnosis of CLL.  相似文献   

3.
The W7 mouse thymoma cell line does not express the metallothionein-I (MT-I) gene in the presence of either cadmium or glucocorticoids, unlike most other cell lines. This cell line was therefore used as a model system for studying the role of DNA methylation on MT-I gene expression. The extent of DNA methylation within the MT-I gene and its flanking regions was determined by comparing the cleavage patterns generated by the isoschizomeric restriction enzymes Hpa II and Msp I. In W7 cells, all of the Hpa II sites in the vicinity of the MT-I gene are methylated, whereas in cells that have an expressible MT-I gene (for example, Friend erythroleukemia cells) all of these Hpa II sites are unmethylated. When W7 cells are treated for a few hours with 5-azacytidine, the MT-I gene becomes inducible by both cadmium and glucocorticoids. Addition of hydroxyurea along with 5-azacytidine prevents MT-I gene induction, suggesting that incorporation of 5-azacytidine into DNA is required before this gene can be activated. To determine whether 5-azacytidine treatment changes the methylation pattern near the MT-I gene, we treated W7 cells with 5-azacytidine and selected inducible cells in 10 μM cadmium. All of the Hpa II sites within the MT-I gene are unmethylated in these cadmium-resistant W7 cells. In addition, flanking DNA sequences are also undermethylated in a pattern similar to that seen in Friend erythroleukemia cells that express the MT-I gene. The possible significance of methylation as a mechanism of gene commitment during cell differentiation is discussed.  相似文献   

4.
Bacterial restriction endonucleases containing the dinucleotide CpG in their cleavage sequences were used to compare the methylation patterns of primarily repeated DNA sequences in (1) bovine somatic cell native DNAs vs bovine sperm cell native DNA and (2) native vs renatured bovine liver and sperm cell DNAs. The restriction patterns of sperm native DNA differ markedly from those of somatic cell native DNAs when using Hpa II, Hha I, and Ava I but not when using the enzymes Eco RI and Msp I. Digestion patterns of germ cell renatured DNA differed significantly from those of germ cell native DNA when using Hpa II but not when using Msp I or Eco RI. The results may not be due to artifacts of renaturation of the DNAs. The results are consistent with the concept that germ cell DNA may be strand asymmetrically hemimethylated. The data also suggest that methylation of the 5'-cytosine in the sequence CCGG renders this site insensitive to cleavage by Msp I.  相似文献   

5.
Treatment with 5-azacytidine, a DNA demethylating reagent, induced flowering in Perilla frutescens (L.) Britton var. crispa (Thunb. ex Murray) Decne. ex L. H. Bailey, an absolute short-day plant under long days. The 5-azacytidine treatment induced slight suppression of vegetative growth but had no obvious effect on any other phenotypes. The Southern hybridization analysis of the genomic DNA isolated from the leaves of 5-azacytidine-treated plants and digested with restriction enzyme, methylation-insensitive Msp I or methylation-sensitive Hpa II with P. frutescens 25S-18S rDNA intergenic spacer probe indicated that the 5-azacytidine treatment caused demethylation of the genomic DNA. The 5-azacytidine-induced flowering was delayed as compared with the short day-induced flowering. Flowers were formed even at the lower nodes which had not been directly treated with 5-azacytidine. The results suggest that DNA demethylation induced flowering by inducing the production of a transmissible flowering stimulus in P. frutescens .  相似文献   

6.
The in vitro conservation of potato using tissue culture medium supplemented with the growth retardant mannitol causes morphological changes in the propagated material. These culture conditions seem to have an affect on the DNA extracted from the regenerated plants, when it is digested by the methylation sensitive restriction enzymes Hpa II/Msp I and Eco RII/Bst NI, compared to the control material. In most of these plants, there appears to be preferential methylation of nuclear domains that contain Eco RII/Bst NI recognition sites in contrast to those that contain Hpa II/Msp I sites. The refractory nature of the isolated DNA to these restriction enzymes was attributed to hypermethylation of genomic DNA and the ribosomal RNA genes. These findings indicate that methylation of DNA sequences may be an adaptive response to conditions of high osmotic stress. The importance of these results for the conservation of potato germplasm and international exchange is discussed.  相似文献   

7.
BACKGROUND: The stingless bee genus Melipona has been divided into two groups, based on their heterochromatin content. Melipona quadrifasciata and Melipona rufiventris have low and high levels of heterochromatin, respectively. Since condensed chromatin may be rich in methylated DNA sequences, M. quadrifasciata and M. rufiventris nuclei may contain different amounts of methylated CpG. These differences could be assessed by comparing Feulgen-DNA values obtained by image analysis of cells treated with the restriction enzymes Msp I and Hpa II that distinguish between methylated and unmethylated DNA. Msp I and Hpa II cleave the sequence -CCGG-, but there is no cleavage by Hpa II if the cytosine of the central CG dinucleotide is methylated. METHODS: Malpighian tubules of M. quadrifasciata and M. rufiventris were treated with Msp I and Hpa II prior to the Feulgen reaction, and analyzed by automatic scanning microspectrophotometry. RESULTS: The Feulgen-DNA values for the heterochromatin of M. rufiventris and for the small heterochromatin and some euchromatin domains of M. quadrifasciata mostly decreased after treatment with Msp I, but were unchanged after treatment with Hpa II. CONCLUSION: CpG methylation, although detected in diverse chromatin compartments in different bee species, may induce silencing effects required for the same cell physiology.  相似文献   

8.
Methylated and unmethylated DNA compartments in the sea urchin genome.   总被引:32,自引:0,他引:32  
A P Bird  M H Taggart  B A Smith 《Cell》1979,17(4):889-901
Sea urchin (Echinus esculentus) DNA has been separated into high and low molecular weight fractions by digestion with the mCpG-sensitive restriction endonucleases Hpa II, Hha I and Ava I. The separation was due to differences in methylation at the recognition sequences for these enzymes because an mCpG-insensitive isoschizomer of Hpa II (Msp I) digested Hpa II-resistant DNA to low molecular weight, showing that many Hpa II sites were in fact present in this fraction; and because 3H-methyl methionine administered to embryos was incorporated into the high molecular weight Hpa II-, Hha I- and Ava I-resistant fraction, but not significantly into the low molecular weight fraction. The fraction resistant to Hpa II, Hha I and Ava I amounted to about 40% of the total DNA. It consisted of long sequence tracts between 15 and well over 50 kg in length, in which many sites for each of these enzymes were methylated consecutively. The remaining 60% of the genome, (m-), was not significantly methylated. Methylated and unmethylated fractions were considered to be subfractions of the genome because enriched unique sequences from one fraction cross-reassociated poorly with the other fraction and specific sequences were found in either (m+) or (m-) but not in both (see below). Similar (m+) and (m-) compartments were found in embryos, germ cells and adult somatic tissues. Furthermor, we found no evidence for changes in the sequence composition of (m+) or (m-) between sperm, embryo or intestine DNAs, although low levels of exchange would not have been detected. Using cloned Echinus histone DNA, heterologous 5S DNA and ribosomal DNA probes, we have found that each of these gene families belongs to the unmethylated DNA compartment in all the tissues examined. In particular, there was no detectable methylation of histone DNA either in early embryos, which are thought to be actively transcribing the bulk of histone genes, or in sperm and gastrulae, in which most histone genes are not being transcribed. In contrast to these gene families, sequences complementary to an internally repetitious Echinus DNA clone were found primarily in the methylated DNA compartment.  相似文献   

9.
The role of DNA methylation in the expression of the rat gamma-glutamyl transpeptidase (GGT) gene was assessed in the Fao cell line using a hypomethylating agent, 5-azacytidine. Ten repetitive treatments of the cells, with 8 microM 5-azacytidine for 24 h, led to 13- and 80-fold increases, respectively, in GGT activity and in GGT mRNA level. The DNA methylation patterns generated by the isoschizomeric restriction enzymes Hpa II and Msp I indicated that the GGT gene, highly methylated in Fao cells, became strongly demethylated after 5-azacytidine treatments. Thus, DNA demethylation increases the expression of the GGT gene. 5-Azacytidine treatments also increased, but to a lesser extent, mRNAs level for actin, albumin, mitochondrial aspartate aminotransferase, aldolase B mRNAs (12- to 16-fold) as well as for tubulin, gluthathione transferase, and tyrosine aminotransferase mRNAs (2- to 5-fold). The GGT gene expression was further studied in B4 cells, cloned from the demethylated Fao cell population. This clone B4 exhibited a stable and strong GGT activity and a highly demethylated GGT gene. Among the three GGT mRNA I, II, or III, transcribed from three different promoters of the single rat GGT gene, only mRNA III was detected in Fao cells and was increased in clone B4, indicating that the demethylation acts on the promoter for mRNA III. The analysis of the differentiation state of B4 cells, as compared to Fao cells, showed a loss of the regulation of GGT and aspartate aminotransferase genes by dexamethasone, as well as a loss of the gluconeogenic pathway. Interestingly, B4 cells have retained many other specific functions of hepatic differentiation and have acquired alpha-fetoprotein expression; thus this clone exhibits the characteristics of a hepatic fetal phenotype.  相似文献   

10.
Methylation patterns from cold-inducible and embryo-specific Arabidopsis thaliana gene promoter regions were investigated. Pairs of restriction enzymes sensitive and insensitive to methylation in the same recognition sequence were used to digest genomic DNA, and the methylation status was visualized by Southern hybridization. The pair BstN I/ EcoR II should detect CpNpG methylation due to the sensitivity of EcoR II to 5-methylcytosine in the second position in the recognition sequence (5-CC(A/T)GG-3). The pair Msp I/Hpa II will detect both CpNpG methylation and CpG methylation, since Msp I does not digest the recognition sequence (5-CCGG-3) when the first C residue is methylated, while Hpa II restriction is inhibited by methylation of either of the two C residues. EcoR II digestion studies suggested CpNpG methylation in all genes tested and demethylation after cold stress in all genes (including two control embryo-specific Lea genes not induced by low temperature). Control experiments indicated an unexpected pattern of methylation and low temperature demethylation in chloroplast genes. Additional control experiments, using the methylation sensitive enzyme, ScrF I (recognizing the sequence 5-CCNGG-3), disproved the presence of 5-methylcytosine in common sites not digested by EcoR II. (CpNpG-methylation was revealed in one ScrF I site in one gene and in Msp I/Hpa II sites in two genes. CpG methylation was not found in any gene tested.) Our study indicates that results obtained using EcoR II for DNA methylation studies should be interpreted with caution. The peculiarities of the EcoR II enzyme are further discussed.  相似文献   

11.
The accessibility of five specific DNA sequences to six different single site restriction endonucleases was evaluated in replicating and mature simian virus 40 chromosomes isolated by three different methods. Electron microscopic and gel electrophoretic analysis of the DNA digestion products demonstrated that DNA accessibility in chromatin was established within 400 base pairs of replication forks and remained essentially unchanged during production of mature chromosomes and their subsequent re-entry into the replication pool. Saturating amounts of each enzyme reproducibly cut a fraction of the chromosomes, ranging from 13 to 49%. This is consistent with a nearly random phasing of chromatin structure. Examples in which all chromosomes were either cleaved or intact were never observed. Although variation in the accessibility of DNA sites near the origin of replication could be interpreted as preferred phasing in about 25% of the chromosomes, the finding that two isoschizomers, Hpa II and Msp I, did not cut chromosomes to the same extent precludes an unambiguous interpretation of the extents of cleavage of individual restriction enzymes. Since the extent of DNA cleavage observed at each restriction site was essentially indistinguishable in replicating as compared to mature chromosomes, the accessibility of DNA sequences near the origin is not obviously related to replication. Furthermore, the accessibility of DNA sites on one arm of a single replication fork was the same as the homologous sites on the other arm, consistent with a nearly random phasing of chromatin structure on both arms. This suggests that chromatin assembly occurs independently on the 2 sibling molecules of a single replicating chromosome.  相似文献   

12.
Restriction enzyme digestion of hemimethylated DNA.   总被引:26,自引:17,他引:9       下载免费PDF全文
Hemimethylated duplex DNA of the bacteriophage phi X 174 was synthesized using primed repair synthesis is in vitro with E. coli DNA polymerase I followed by ligation to produce the covalently closed circular duplex (RFI). Single-stranded phi X DNA was used as a template, a synthetic oligonucleotide as primer and 5-methyldeoxycytidine-5'-triphosphate (5mdCTP) was used in place of dCTP. The hemimethylated product was used as substrate for cleavage by various restriction enzymes. Out of the 17 enzymes tested, only 5 (BstN I, Taq I, Hinc II, Hinf I and Hpa I) cleaved the hemimethylated DNA. Two enzymes (Msp I and Hae III) were able to produce nicks on the unmethylated strand of the cleavage site. Msp I, which is known to cleave at CCGG when the internal cytosine residue is methylated, does not cleave when both cytosines are methylated. Another enzyme, Apy I, cleaves at the sequence CCTAGG when the internal cytosine is methylated, but is inactive on hemimethylated DNA in which both cytosines are methylated. Hemimethylated molecules should be useful for studying DNA methylation both in vivo and in vitro.  相似文献   

13.
Restriction endonuclease digests of total DNA from races 3, 4, and 5 of the soybean cyst nematode, Heterodera glycines, have been analyzed on agarose gels. DNA fragment patterns of race 4 were completely different from those patterns obtained for races 3 and 5 by all eight restriction enzymes tested. Differences in long and short restriction DNA fragments generated by the enzyme Msp I or its isoschizomer, Hpa II, were detected between race 3 and 5 digestion profiles. Rapid DNA isolation followed by its digestion with either Msp I or Hpa II enzymes and visualization of repetitive DNA fragments in agarose gels provided a diagnostic assay for the populations of the three races examined in this study.  相似文献   

14.
Two techniques were used to analyze global genomic 5-methyl cytosine methylation at CCGG sites of medaka embryo DNA. DNA was labeled by incorporation of microinjected radiolabeled deoxynucleotide into one-cell embryos. After Hpa II or Msp I digestion the radiolabeled DNA was fractionated in agarose gels and the distribution of label quantified throughout each sample lane to detect differences in fragment distribution. Alternately isolated DNA was digested with Hpa II or Msp I and the resulting generated termini end-labeled. The end-labeled digestion products were then analyzed for fragment distribution after gel fractionation. These techniques proved to be extremely sensitive, allowing comparison of genomic DNA methylation values from as few as 640 fish cells. The data suggest that in medaka embryos the vast majority (>90%) of genomic DNA is methylated at CCGG sites. Furthermore, these data support the conclusion that the extent of methylation at these sites does not change or changes very little during embryogenesis (from 16 cells to the hatchling). These data argue against active demethylation, or loss of methylation patterns by dilution, during the developmental stages between the one cell zygote and gastrulation. From a comparative viewpoint, these data may indicate that mammals and fishes methylate and demethylate their genomes in very different manners during development.  相似文献   

15.
The methylation pattern of radish Raphanus sativus nuclear rDNA has been investigated using the Hpa II, Msp I, and Hha I restriction enzymes. The presence of numerous target sites for these enzymes has been shown using cloned rDNA fragments. A large fraction of the numerous rDNA units are heavily methylated, being completely resistant to Hpa II and Hpa I. However, specific sites are constantly available in another fraction of the units and are therefore unmethylated. The use of different probes allowed us to demonstrate that hypomethylated sites are present in different regions. Major hypomethylated Hha I sites have been mapped in the 5′ portion of 25S rRNA coding sequence. Among the hypomethylated fraction, different methylation patterns coexist. It has been possible to demonstrate that methylation patterns are specific for particular units. The Hha I pattern of rDNA in tissues of different developmental stages was analyzed. Evidence for possible tissue specific differences in the methylation pattern is reported.  相似文献   

16.
The mechanism of chromosome banding induced by restriction endonucleases was analyzed by measuring the amount of radioactivity extracted from [14C]thymidine-labeled chromosomes digested first with restriction enzymes and subsequently with proteinase K and DNase I. Restriction enzymes with a high frequency of recognition sites in the DNA produced a large number of short DNA fragments, which were extracted from chromosomes during incubation with the enzyme. This loss of DNA resulted in decreased chromosomal staining, which did not occur in regions resistant to restriction enzyme digestion and thus led to banding. Subsequent digestion of chromosomes with proteinase K produced a further loss of DNA, which probably corresponded to long fragments retained in the chromosome by the proteins of fixed chromatin. Restriction enzymes induce chromatin digestion and banding in G1 and metaphase chromosomes, and they induce digestion and the appearance of chromocenters in interphase nuclei. This suggests that the spatial organization and folding of the chromatin fibril plays little or no role in the mechanism of chromosome banding.It was confirmed that the pattern of chromosome banding induced by AluI, MboI, HaeIII, DdeI, RsaI, and HinfI is characteristic for each endonuclease. Moreover, several restriction banding polymorphisms that were not found by conventional C-banding were detected, indicating that there may be a range of variability in the frequency and distribution of restriction sites in homologous chromosome regions.  相似文献   

17.
A possible structure for calf satellite DNA I.   总被引:7,自引:6,他引:1       下载免费PDF全文
Calf satellite DNA I (p = 1.715) has been hydrolysed by a number or restriction endonucleases. It consists of a repeating unit of 1460 nucleotide pairs within which the sites of Eco R II Mbo I, Sac I, Alu I, Ava II and Hha I were localised in comparison with those of Eco R I and Hind II. The distribution of the Hpa II, Sac I, Hha I, Hinf I and Mbo II sites within calf satellite DNA I, as well as that of several restriction endonuclease sites within calf satellite DNA III (p = 1.705) allowed me to define subsatellite fractions. Furthermore, some of the sites of the CpG containing restriction enzymes Hpa II and Hha I are lacking. The possible implications of these results are discussed.  相似文献   

18.
D Barker  M Schafer  R White 《Cell》1984,36(1):131-138
Unique loci in the human genome were examined with restriction enzymes in order to detect restriction fragment length polymorphisms (RFLPs). Of 31 arbitrary loci, nine were detectably polymorphic, reflecting ten polymorphic restriction sites. Nine of the ten polymorphic sites were revealed with two restriction enzymes, Msp I and Taq I, whose recognition sequences have in common the dimer sequence CpG. The cytosines in the CpG sequence are known to be frequently methylated in mammals, and the occurrence of significant variation in Msp I and Taq I sites supports the view that methylated cytosine residues are hotspots for mutation in mammalian DNA.  相似文献   

19.
Based on analysis by high pressure liquid chromatography, greater than 35% of the cytosine residues in chloroplast DNA of vegetative cells were found to be methylated constitutively in the nuclear gene mutation (me-1) of Chlamydomonas reinhardtii, which has an otherwise wild-type phenotype. Digestion of chloroplast DNA from vegetative cells and gametes of this mutant with restriction endonucleases Hpa II and Msp I reveals that in the 5′CCGG3′ sequence, CpG is methylated extensively, whereas CpC is only methylated occasionally. Hae III (5′GGCC3′) digestion of the mutant chloroplast DNA also shows extensive methylation of the GpC sequence. In contrast to the results of Sager and colleagues, which show a correlation between methylation of chloroplast DNA and transmission of chloroplast genes in crosses, our results with crosses of the me-1 mutant suggest that extensive chloroplast DNA methylation may be insufficient to account for the pattern of inheritance of chloroplast genes in Chlamydomonas.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号