首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
胸腺嘧啶类似物5-溴脱氧尿嘧啶核苷(BrdU)标记技术是一种研究DNA复制、修复等生命过程的有效手段。由于酿酒酵母(Saccharomyces cerevisiae)中缺少胸腺嘧啶核苷酸补救途径,胞外BrdU不能有效的渗入到基因组中,使该技术在酿酒酵母中的应用受到极大制约。通过在基因组中引入单纯疱疹病毒胞苷激酶(HSV-TK)和人类平衡核苷转运蛋白(hENT1)基因,工作建立了BrdU标记酵母基因组DNA的方法。在生长对数中期加入0.2mg/ml BrdU,离体检测法检测发现,标记3h的荧光信号较1h、5h时强;胞内检测法结果显示,标记3h时55.3%的基因组DNA中能够渗入BrdU。该工作为酿酒酵母DNA复制、修复等方面提供了直接有效的研究方法。  相似文献   

2.
Phospholipase D1 (PLD1) is an important enzyme involved in lipid signal transduction in eukaryotes. A role for PLD1 in signaling in Saccharomyces cerevisiae was examined. Pheromone response in yeast is controlled by a well-characterized protein kinase cascade. Loss of PLD1 activity was found to impair pheromone-induced changes in cellular morphology that result in formation of mating projections. The rate at which projections appeared following pheromone treatment was delayed, suggesting that PLD1 facilitates the execution of a rate-limiting step in morphogenesis. Mutants were found to be less sensitive to pheromone, again arguing that PLD1 is acting at a rate-limiting step. The fact that morphogenesis is most dramatically affected indicates that PLD1 functions primarily in the morphogenic branch of the pheromone response pathway.  相似文献   

3.
8-Oxo-7,8-dihydroguanine (8-oxoG) is produced abundantly in DNA exposed to free radicals and reactive oxygen species. The biological relevance of 8-oxoG has been unveiled by the study of two mutator genes in Escherichia coli, fpg, and mutY. Both genes code for DNA N-glycosylases that cooperate to prevent the mutagenic effects of 8-oxoG in DNA. In Saccharomyces cerevisiae, the OGG1 gene encodes a DNA N-glycosylase/AP lyase, which is the functional homologue of the bacterial fpg gene product. The inactivation of OGG1 in yeast creates a mutator phenotype that is specific for the generation of GC to TA transversions. In yeast, nucleotide excision repair (NER) also contributes to the release of 8-oxoG in damaged DNA. Furthermore, mismatch repair (MMR) mediated by MSH2/MSH6/MLH1 plays a major role in the prevention of the mutagenic effect of 8-oxoG. Indeed, MMR acts as the functional homologue of the MutY protein of E. coli, excising the adenine incorporated opposite 8-oxoG. Finally, the efficient and accurate replication of 8-oxoG by the yeast DNA polymerase η also prevents 8-oxoG-induced mutagenesis. The aim of this review is to summarize recent literature dealing with the replication and repair of 8-oxoG in Saccharomyces cerevisiae, which can be used as a paradigm for DNA repair in eukaryotes.  相似文献   

4.
INTRODUCTIONDNA replication is a fundamenial process thatmust occur only once at each ce1l cycle. This restrictcontrol appears to be achieved through the coordi-nated actiVities of numerous proteins. The buddingyeast Saccharompes cerevhaae provides an excellenteukaryotic model fOr study of proteins invo1ved inthe control of DNA replication.In the budding yeast, minichromosome mainte-nance (MCM) proteins, MCM2-7, are a family of strsequence-related proteins that play crucia1 roles inr…  相似文献   

5.
M J Penninckx  C J Jaspers 《Biochimie》1985,67(9):999-1006
In a foregoing paper we have shown the presence in the yeast Saccharomyces cerevisiae of an enzyme catalyzing the hydrolysis of L-gamma-glutamyl-p-nitroanilide, but apparently distinct from gamma-glutamyltranspeptidase. The cellular level of this enzyme was not regulated by the nature of the nitrogen source supplied to the yeast cell. Purification was attempted, using ion exchange chromatography on DEAE Sephadex A 50, salt precipitations and successive chromatographies on DEAE Sephadex 6B and Sephadex G 100. The apparent molecular weight of the purified enzyme was 14,800 as determined by gel filtration. As shown by kinetic studies and thin layer chromatography, the enzyme preparation exhibited only hydrolytic activity against gamma-glutamylarylamide and L-glutamine with an optimal pH of about seven. Various gamma-glutamylaminoacids, amides, dipeptides and glutathione were inactive as substrates and no transferase activity was detected. The yeast gamma-glutamylarylamidase was activated by SH protective agents, dithiothreitol and reduced glutathione. Oxidized glutathione, ophtalmic acid and various gamma-glutamylaminoacids inhibited competitively the enzyme. The activity was also inhibited by L-gamma-glutamyl-o-(carboxy)phenylhydrazide and the couple serine-borate, both transition-state analogs of gamma-glutamyltranspeptidase. Diazooxonorleucine, reactive analog of glutamine, inactivated the enzyme. The physiological role of yeast gamma-glutamylarylamidase-glutaminase is still undefined but is most probably unrelated to the bulk assimilation of glutamine by yeast cells.  相似文献   

6.
7.
DNA interstrand cross-link repair in Saccharomyces cerevisiae   总被引:2,自引:0,他引:2  
DNA interstrand cross-links (ICL) present a formidable challenge to the cellular DNA repair apparatus. For Escherichia coli, a pathway which combines nucleotide excision repair (NER) and homologous recombination repair (HRR) to eliminate ICL has been characterized in detail, both genetically and biochemically. Mechanisms of ICL repair in eukaryotes have proved more difficult to define, primarily as a result of the fact that several pathways appear compete for ICL repair intermediates, and also because these competing activities are regulated in the cell cycle. The budding yeast Saccharomyces cerevisiae has proven a powerful tool for dissecting ICL repair. Important roles for NER, HRR and postreplication/translesion synthesis pathways have all been identified. Here we review, with reference to similarities and differences in higher eukaryotes, what has been discovered to date concerning ICL repair in this simple eukaryote.  相似文献   

8.
9.
K+ is one of the cations (besides protons) whose transport across the plasma membrane is believed to contribute to the maintenance of membrane potential. To ensure K+ transport, Saccharomyces cerevisiae cells possess several types of active and passive transporters mediating the K+ influx and efflux, respectively. A diS-C3(3) assay was used to compare the contributions of various potassium transporters to the membrane potential changes of S. cerevisiae cells in the exponential growth phase. Altogether, the contributions of six K+ transporters to the maintenance of a stable membrane potential were tested. As confirmed by the observed hyperpolarization of trk1 trk2 deletion strains, the diS-C3(3) assay is a suitable method for comparative studies of the membrane potential of yeast strains differing in the presence/absence of one or more cation transporters. We have shown that the presence of the Tok1 channel strongly influences membrane potential: deletion of the TOK1 gene results in significant plasma membrane depolarization, whereas strains overexpressing the TOK1 gene are hyperpolarized. We have also proved that plasma membrane potential is not the only parameter determining the hygromycin B sensitivity of yeast cells, and that the role of intracellular transporters in protecting against its toxic effects must also be considered.  相似文献   

10.
摘要:YPK1是酵母中和哺乳动物蛋白激酶SGK同源的一种丝氨酸∕苏氨酸蛋白激酶,在酿酒酵母(Saccharomyces cerevisiae)生理调节中有重要的作用,和酵母细胞壁的完整性、细胞骨架中肌动蛋白极性、细胞内吞作用、细胞在氮源缺乏和营养条件调节下细胞内部的翻译情况密切相关。【目的】为了深入研究YPK1蛋白激酶的细胞功能以及在细胞信号传导中的作用,【方法】我们构建了过量表达YPK1的高拷贝质粒,研究了过量表达YPK1的酵母细胞在盐胁迫条件下的生长情况,【结果】发现过量表达YPK1会导致酵母细胞对盐胁迫高度敏感,并且这种敏感性依赖于TOR1的存在。【结论】我们的研究结果首次初步揭示YPK1与细胞盐胁迫应答的关系,并初步证明YPK1的功能充分发挥需要TOR1的参与。  相似文献   

11.
Alkylating agents induce cytotoxic DNA base adducts. In this work, we provide evidence to suggest, for the first time, that Saccharomyces cerevisiae Tpa1 protein is involved in DNA alkylation repair. Little is known about Tpa1 as a repair protein beyond the initial observation from a high-throughput analysis indicating that deletion of TPA1 causes methyl methane sulfonate sensitivity in S. cerevisiae. Using purified Tpa1, we demonstrate that Tpa1 repairs both single- and double-stranded methylated DNA. Tpa1 is a member of the Fe(II) and 2-oxoglutarate-dependent dioxygenase family, and we show that mutation of the amino acid residues involved in cofactor binding abolishes the Tpa1 DNA repair activity. Deletion of TPA1 along with the base excision repair pathway DNA glycosylase MAG1 renders the tpa1Δmag1Δ double mutant highly susceptible to methylation-induced toxicity. We further demonstrate that the trans-lesion synthesis DNA polymerase Polζ (REV3) plays a key role in tolerating DNA methyl-base lesions and that tpa1Δmag1revΔ3 triple mutant is extremely susceptible to methylation-induced toxicity. Our results indicate a synergism between the base excision repair pathway and direct alkylation repair by Tpa1 in S. cerevisiae. We conclude that Tpa1 is a hitherto unidentified DNA repair protein in yeast and that it plays a crucial role in reverting alkylated DNA base lesions and cytotoxicity.  相似文献   

12.
The gene MUS81 (Methyl methansulfonate, UV sensitive) was identified as clone 81 in a two-hybrid screen using the Saccharomyces cerevisiae Rad54 protein as a bait. It encodes a novel protein with a predicted molecular mass of 72,316 (632 amino acids) and contains two helix-hairpin-helix motifs, which are found in many proteins involved in DNA metabolism in bacteria, yeast, and mammals. Mus81p also shares homology with motifs found in the XPF endonuclease superfamily. Deletion of MUS81 caused a recessive methyl methansulfonate- and UV-sensitive phenotype. However, mus81Δ cells were not significantly more sensitive than wild-type to γ-radiation or double-strand breaks induced by HO endonuclease. Double mutant analysis suggests that Rad54p and Mus81p act in one pathway for the repair of, or tolerance to, UV-induced DNA damage. A complex containing Mus81p and Rad54p was identified in immunoprecipitation experiments. Deletion of MUS81 virtually eliminated sporulation in one strain background and reduced sporulation and spore viability in another. Potential homologs of Mus81p have been identified in Schizosaccharomyces pombe, Caenorhabditis elegans and Arabidopsis thaliana. We hypothesize that Mus81p plays a role in the recognition and/or processing of certain types of DNA damage (caused by UV and MMS) during repair or tolerance processes involving the recombinational repair pathway. Received: 9 December 1999 / Accepted: 24 February 2000  相似文献   

13.
14.
在外界因素处理下,细胞将启动一系列保护措施以适应各种环境改变,磷酸化调节是蛋白功能调节的主要方式. 为了探讨酵母细胞中Pil1的磷酸化与细胞压力抵抗的关系,实验应用Pil1突变细胞检测在过氧化氢或热处理后细胞的生长情况,用免疫印记法检测热处理后Pil1的表达. 结果表明,相比野生细胞,Pil1突变细胞对抗过氧化氢和热的能力强,热处理后 Pil1的磷酸化水平增高, Pil1的丝氨酸273对于其磷酸化发生至关重要.  相似文献   

15.
Previous studies reported the reconstitution of an Mlh1-Pms1-independent 5′ nick-directed mismatch repair (MMR) reaction using Saccharomyces cerevisiae proteins. Here we describe the reconstitution of a mispair-dependent Mlh1-Pms1 endonuclease activation reaction requiring Msh2-Msh6 (or Msh2-Msh3), proliferating cell nuclear antigen (PCNA), and replication factor C (RFC) and a reconstituted Mlh1-Pms1-dependent 3′ nick-directed MMR reaction requiring Msh2-Msh6 (or Msh2-Msh3), exonuclease 1 (Exo1), replication protein A (RPA), RFC, PCNA, and DNA polymerase δ. Both reactions required Mg2+ and Mn2+ for optimal activity. The MMR reaction also required two reaction stages in which the first stage required incubation of Mlh1-Pms1 with substrate DNA, with or without Msh2-Msh6 (or Msh2-Msh3), PCNA, and RFC but did not require nicking of the substrate, followed by a second stage in which other proteins were added. Analysis of different mutant proteins demonstrated that both reactions required a functional Mlh1-Pms1 endonuclease active site, as well as mispair recognition and Mlh1-Pms1 recruitment by Msh2-Msh6 but not sliding clamp formation. Mutant Mlh1-Pms1 and PCNA proteins that were defective for Exo1-independent but not Exo1-dependent MMR in vivo were partially defective in the Mlh1-Pms1 endonuclease and MMR reactions, suggesting that both reactions reflect the activation of Mlh1-Pms1 seen in Exo1-independent MMR in vivo. The availability of this reconstituted MMR reaction should now make it possible to better study both Exo1-independent and Exo1-dependent MMR.  相似文献   

16.
ABSTRACT

Sko1 plays a key role in the control of gene expression by osmotic and oxidative stress in yeast. We demonstrate that the decrease in chronological lifespan (CLS) of hog1Δ cells was suppressed by SKO1 deletion. sko1Δ single mutant cells were shown to have a longer CLS, thus implicating Sko1 in the regulation of their CLS.  相似文献   

17.
The flor strains of Saccharomyces cerevisiae form a flor on the surface of wine after alcoholic fermentation. High hydrophobicity of the cell surface is suggested to be important for flor formation by the flor wine yeasts. However, the molecular mechanism of flor formation is not clear. We found that expression of C-terminal deleted NRG1 lacking its two C2H2 zinc finger motifs (NRG1(1-470)) on the multicopy plasmid conferred the ability to form a flor to a non-flor laboratory strain. The cell surface hydrophobicity of NRG1(1-470) was higher than of the non-flor strain. Disruption of the Nrg1p-repressed gene FLO11, which encodes a cell surface glycoprotein that functions as a flocculin or an adhesin, abolished flor formation. Moreover, expression of FLO11 on a multicopy plasmid could also cause flor formation. These results indicate that FLO11 is essential for flor formation by NRG1(1-470). In addition, the results suggest that the C-terminal truncated form of Nrg1p exerts a dominant negative effect on FLO11 repression, resulting in FLO11 expression and, thus, flor formation.  相似文献   

18.
Like bacteria, fungi growing in biofilms are often embedded in a so-called extracellular matrix (ECM), a complex and species-specific mixture of compounds secreted by cells in the biofilm. The precise physiological role of this ECM and its importance for the stress and drug resistance that is so characteristic of biofilms remain vague. Here, we describe the discovery of an ECM produced by flocculating Saccharomyces cerevisiae cells. Although S. cerevisiae has long been believed not to produce an ECM, our results indicate that flocculating cells secrete a mixture of glucose and mannose polysaccharides that surrounds flocculating cells. This matrix impedes the penetration of large molecules into the floc, but does not seem to play a role in the resistance of flocculating cultures to drugs and ethanol. Together, our results provide a new model system to study the formation and biological role of microbial extracellular matrices.  相似文献   

19.
BRCA1 tumor suppressor gene is found mutated in familial breast and ovarian cancer. Most cancer related mutations were found located at the RING (Really Interesting New Gene) and at the BRCT (BRca1 C-Terminal) domain. However, 20 y after its identification, the biological role of BRCA1 and which domains are more relevant for tumor suppression are still being elucidated. We previously reported that expression of BRCA1 cancer related variants in the RING and BRCT domain increases spontaneous homologous recombination in yeast indicating that BRCA1 may interact with yeast DNA repair/recombination. To finally demonstrate whether BRCA1 interacts with yeast DNA repair, we exposed yeast cells expressing BRCA1wt, the cancer-related variants C-61G and M1775R to different doses of the alkylating agent methyl methane-sulfonate (MMS) and then evaluated the effect on survival and homologous recombination. Cells expressing BRCA1 cancer variants were more sensitive to MMS and less inducible to recombination as compared to cell expressing BRCA1wt. Moreover, BRCA1-C61G and -M1775R did not change their nuclear localization form as compared to the BRCA1wt or the neutral variant R1751Q indicating a difference in the DNA damage processing. We propose a model where BRCA1 cancer variants interact with the DNA double strand break repair pathways producing DNA recombination intermediates, that maybe less repairable and decrease MMS-induced recombination and survival. Again, this study strengthens the use of yeast as model system to characterize the mechanisms leading to cancer in humans carrying the BRCA1 missense variant.  相似文献   

20.
陈叶福  沈世超  王艳  肖冬光 《微生物学报》2008,48(12):1609-1615
【目的】在不影响酵母正常代谢前提下,构建亚硫酸盐分泌量提高的基因工程菌株,增加二氧化硫生成量,有效地解决啤酒老化问题。【方法】以适量高产二氧化硫工业啤酒酵母突变株M8总DNA为模板,PCR方法得到带有不同长度5′端非编码区的基因片段SSU1-1、SSU1-2,以大肠杆菌-酿酒酵母穿梭质粒YEp352构建表达载体pSU1和pSU2,转化实验室酵母YS58,验证SSU1多克隆表达对其二氧化硫生成量的影响。进而将pSU2转化工业啤酒酵母M8,利用亚硫酸盐抗性筛选转化子,并对其二氧化硫和硫化氢生成量及其啤酒抗老化性能进行测定和分析。【结果】实验室酵母转化子pSU1-4和pSU2-3二氧化硫生成量较原株明显提高而硫化氢生成量基本不变,工业啤酒酵母转化子Y2二氧化硫生成量比原株M8提高74.4%,TBA值下降14.9%,DPPH自由基清除率提高38.2%,硫化氢生成量基本不变。【结论】SSU1基因的多拷贝表达有效提高了亚硫酸盐转运蛋白Ssu1p表达量,增加了亚硫酸盐分泌量,啤酒抗氧化能力得到明显增强,而对酵母硫代谢途径中亚硫酸盐还原为硫化物代谢过程没有影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号