首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Formation of secretory vesicles in the noncellular secretory cavity of glandular trichomes of Cannabis saliva L. was examined by transmission electron microscopy. Two patterns of vesicle formation occurred during gland morphogenesis. 1) During initial phases of cavity formation small hyaline areas arose in the wall near the plasma membrane of the disc cell. Hyaline areas of elongated shape and different sizes were distributed throughout the wall and adjacent to the secretory cavity. Hyaline areas increased in size, some possibly fusing with others. These hyaline areas, possessing a membrane, moved into the cavity where they formed vesicles. As membraned vesicles they developed a more or less round shape and their contents became electron-dense. 2) During development of the secretory cavity and when abundant secretions were present in the disc cells, these secretions passed through the wall to accumulate as membraned vesicles of different sizes in the cavity. As secretions emerged from the wall, a membrane of wall origin delimited the secretory material from cavity contents. Vesicles released from the wall migrated in the secretory cavity and contacted the sheath where their contents permeated into the subcuticular wall as large or diffused quantities of secretions. In the subcuticular wall these secretions migrated to the wall–cuticle interface where they contributed to structural thickening of the cuticle. This study demonstrates that the secretory process in glands of Cannabis involves not only secretion of materials from the disc cell, but that the disc cell somehow packages these secretions into membraned vesicles outside the cell wall prior to deposition into the secretory cavity for subsequent structural development of the sheath.  相似文献   

2.
The dermal sheath of glandular trichomes of Cannabis sativa L., consisting of cuticle and a subcuticular wall, was examined by transmission electron microscopy. Cuticle thickened selectively on the outer wall of disc cells of each trichome prior to formation of the secretory cavity, whereas thickening was less evident on the dermal cells of the bract. Membraned secretory vesicles that differ in size and appearance in the secretory cavity were the source of precursors for synthesis of cuticle. Vesicle contents, released following the degradation of the vesicle membrane upon contact with the subcuticular wall, contributed to both structured and amorphous phases of cuticle development. The structured phase was represented by deposition and thickening of cuticle at the subcuticular wall-cuticle interface to form a thickened cuticle. In the amorphous phase precursors permeated the cuticle in a liquid state, as shown by fusion of cuticles and wax layers between contiguous glands, and may have contributed to growth in surface area of the expanding sheath. Disc cells are interpreted to control growth of secretory cavity by secretion of membraned vesicles into the cavity. The thickened cuticle, which increased eightfold in thickness during enlargement of the gland, provided structural strength for the extensive surface area of the dermal sheath. The gland of Cannabis in which vesicle contents contribute to the growth in thickness and surface area of the cuticle of the sheath is interpreted to represent a phylogenetically derived state as contrasted to secretory glands possessing only cuticle and lacking a complement of secretory vesicles.  相似文献   

3.
Formation of the cuticle from components of the secretory cavity and subcuticular wall was studied by transmission electron microscopy of glandular trichomes of Cannabis prepared by high pressure cryofixation-cryosubstitution. Secretory vesicles in the secretory cavity resembled those localized in the subcuticular wall as well as the vesicle-related material associated with the irregular inner surface of the cuticle and appeared to provide precursors for thickening of the cuticle. Some contiguous vesicles in the secretory cavity and subcuticular wall lacked a surface feature at their point of contact, supporting an interpretation of vesicle fusion. Fibrillar matrix from the secretory cavity contributed fibrillar matrix to the subcuticular wall, and persisted as residual fibrillar matrix associated with secretory materials coalesced to the thickened inner surface of the cuticle. Elongated fibrils arranged in uniformly spaced parallel pairs contributed to the organization of fibrillar matrix in the subcuticular wall. Striae were evident in the outer portion of the cuticle, and appeared to represent sites of degraded residual fibrillar matrix associated with secretory materials coalesced to the inner cuticular surface. This study supports an interpretation that contents of secretory vesicles from the secretory cavity contribute to formation of glandular cuticle.  相似文献   

4.
The disc cell wall facing the secretory cavity in lipophilic glands of Cannabis was studied for origin and distribution of hyaline areas, secretory vesicles, fibrillar matrix and particulate material. Secretions evident as light areas in the disc cell cytoplasm pass through modified regions in the plasma membrane and appear as hyaline areas in the cell wall. Hyaline areas, surrounded with a filamentous outline, accumulate near the wall surface facing the secretory cavity where they fuse to form enlarged hyaline areas. Fibrillar matrix is related to and may originate from the dense outer layer of the plasma membrane. This matrix becomes distributed throughout the wall material and contributes in part to the composition of the surface feature of secretory vesicles. Thickening of the cell wall is associated with secretions from the disc cells that facilitates movement of hyaline areas, fibrillar matrix and other possible secretions through the wall to form secretory vesicles and intervesicular materials in the secretory cavity. The outer wall of disc cells in aggregate forms the basilar wall surface of the secretory cavity which facilitates the organization of secretory vesicles that fill the secretory cavity.  相似文献   

5.
Development of the secretory cavity and formation of the subcuticular wall of glandular trichomes in Cannabis sativa L. was examined by transmission electron microscopy. The secretory cavity originated at the wall-cuticle interface in the peripheral wall of the discoid secretory cells. During the presecretory phase in development of the glandular trichome, the peripheral wall of the disc cells became laminated into a dense inner zone adjacent to the plasma membrane and a less dense outer zone subjacent to the cuticle. Loosening of wall matrix in the outer zone initiated a secretory cavity among fibrous wall materials. Membrane-bound hyaline areas, compressed in shape, arose in the wall matrix. They appeared first in the outer and subsequently in the inner zone of the wall. The membrane of the vesicles, and associated dense particles attached to the membrane, arose from the wall matrix. Hyaline areas, often with a conspicuous electron-dense content, were released into the secretory cavity where they formed rounded secretory vesicles. Fibrous wall material released from the surface of the disc cells became distributed throughout the secretory cavity among the numerous secretory vesicles. This wall material was incorporated into the developing subcuticular wall that increased five-fold in thickness during enlargement of the secretory cavity. The presence of a subcuticular wall in the cavity of Cannabis trichomes, as contrasted to the absence of this wall in described trichomes of other plants, supports a polyphyletic interpretation of the evolution of the secretory cavity in glandular trichomes among angiosperms.  相似文献   

6.
The capitate-sessile and capitate-stalked glands of the glandular secretory system in Cannabis, which are interpreted as lipophilic type glandular hairs, were studied from floral bracts of pistillate plants. These glands develop a flattened multicellular disc of secretory cells, which with the extruded secretory product forms the gland head and the auxiliary cells which support the gland head. The secretory product accumulates beneath a sheath derived from separation of the outer wall surface of the cellular disc. The ultrastructure of secretory cells in pre-secretory stages is characterized by a dense ground plasm, transitory lipid bodies and fibrillar material, and well developed endoplasmic reticulum. Dictyosomes and dictyosome-derived secretory vesicles are present, but never abundant. Secretory stages of gland development are characterized by abundant mitochondria and leucoplasts and by a large vacuolar system. Production of the secretory product is associated with plastids which increase in number and structural complexity. The plastids develop a paracrystalline body which nearly fills the mature plastid. Material interpreted as a secretion appears at the surface of plastids, migrates, and accumulates along the cell surface adjoining the secretory cavity. Extrusion of the material into the secretory cavity occurs directly through the plasma membrane-cell wall barrier.  相似文献   

7.
Delta 9-tetrahydrocannabinol (THC) localization in glandular trichomes and bracteal tissues of Cannabis, prepared by high pressure cryofixation-cryosubstitution, was examined with a monoclonal antibody-colloidal gold probe by electron microscopy (EM). The antibody detected THC in the outer wall of disc cells during the presecretory cavity phase of gland development. Upon formation of the secretory cavity, the immunolabel detected THC in the disc cell wall facing the cavity as well as the subcuticular wall and cuticle throughout development of the secretory cavity. THC was detected in the fibrillar matrix associated with the disc cell and with this matrix in the secretory cavity. The antibody identified THC on the surface of secretory vesicles, but not in the secretory vesicles. Gold label also was localized in the anticlinal walls between adjacent disc cells and in the wall of dermal and mesophyll cells of the bract. Grains were absent or detected only occasionally in the cytoplasm of disc or other cells of the bract. No THC was detected in controls. These results indicate THC to be a natural product secreted particularly from disc cells and accumulated in the cell wall, the fibrillar matrix and surface feature of vesicles in the secretory cavity, the subcuticular wall, and the cuticle of glandular trichomes. THC, among other chemicals, accumulated in the cuticle may serve as a plant recognition signal to other organisms in the environment.  相似文献   

8.
The diversity of non-glandular and glandular hairs of Cannabis sativa L. (marihuana) are described by scanning electron microscopy. The non-glandular hairs are of two major types, as distinguished by size differences and locations, and all of them are highly silicified. The presence of silica as well as cystoliths of calcium carbonate help in the identification of marihuana even in its ash residues. X-ray microanalyses of Cannabis hairs are compared with those of Humulus lupulus and Lantana camera, whose hairs have been considered to resemble those of marihuana. Glandular hairs are found to be of two major categories. One group consists of glands whose heads are generally made up of eight cells and the other group whose heads are generally made up of two cells but never more than four cells. All glands of both categories are stalked. Some glands of the first category are massively stalked and these are restricted solely to anthers and bracts of staminate and pistillate plants. The massive stalk is considered to be made up of epidermal and hypodermal cells that have grown in response to some stimulation during anthesis. Fine details of the shoot system of Cannabis, such as cuticular ridges on epidermal cells, warty protuberances on non-glandular hairs, and surface views of glands in developing stages are also reported. Glandular hairs on the bracts of Humulus lupulus resemble those of Cannabis.  相似文献   

9.
Cellulase reaction product was localized cytochemically at the ultrastructural level in the cell wall of disc cells, the secretory cavity and in the subcuticular wall of glands inCannabis. Cellulase reaction product was evident in the less dense region of the disc cell wall prior to secretory cavity formation. Reactivity in this region was associated with separation of an outer zone, forming the subcuticular wall, from the inner wall zone adjacent to the plasma membrane of the disc cells. Reaction product was associated with the disc cell wall and fibrillar matrix extending from it into the secretory cavity. Reactivity remained evident over the subcuticular wall throughout enlargement of the secretory cavity. Reaction product also was present over fibrillar matrix in the secretory cavity associated with both the inner wall and the subcuticular wall. The distribution of cellulase reaction product supports an interpretation that cellulase is involved in formation of the secretory cavity and subsequent redistribution of wall products to form the subcuticular wall during development of the secretory cavity.  相似文献   

10.
Mordacia mordax is one of the two anadromous parasitic lamprey species of the southern hemisphere family Mordaciidae. Its adults possess two lateral buccal glands and one central buccal gland. When the tongue-like piston is retracted, the buccal glands occupy much of the opening of the oral cavity at the rear of the buccal cavity. The glands contain numerous tube-like, ductless secretory units, which discharge directly into the buccal cavity. Their secretory epithelial cells contain numerous granules, some of which are zymogen-like, while others have a beaded, spiralled appearance. The similarity of the latter to mast cell granules suggests that they may likewise produce an anticoagulant, which would be valuable to a presumed blood feeder such as M. mordax. The mucus produced by these cells could act as a carrier for the secretions and as an adhesive for promoting retention of t he secretions on the host's surface. When the young adults is transferred to salt water, the buccal glands increase their production and discharge of secretions. Since the glands are not enclosed in musculature, their secretions are probably discharged by mechanical pressure applied by the forward movement of the head of the tooth-bearing piston into the buccal cavity. An account is given of the way in which the location, number, glandular organization, secretory granules, and type of secretion of the buccal glands of M. mordax, and thus presumably also their mode of function, differ markedly from those of members of the other lamprey family found in the southern hemisphere, and of all holarrctic lampreys. © 1995 Wiley-Liss, Inc.  相似文献   

11.
Silk spinning is widely-spread in trombidiform mites, yet scarse information is available on the morphology of their silk glands. Thus this study describes the fine structure of the prosomal silk glands in a small parasitic mite, Ornithocheyletia sp. (Cheyletidae). These are paired acinous glands incorporated into the podocephalic system, as typical of the order. Combined secretion of the coxal and silk glands is released at the tip of the gnathosoma. Data obtained show Ornithocheyletia silk gland belonging to the class 3 arthropod exocrine gland. Each gland is composed of seven pyramidal secretory cells and one ring-folded intercalary cell, rich in microtubules. The fine structure of the secretory cells points to intensive protein synthesis resulted in the presence of abundant uniform secretory granules. Fibrous content of the granules is always subdivided into several zones of two electron densities. The granules periodically discharge into the acinar cavity by means of exocytosis. The intercalary cell extends from the base of the excretory duct and contributes the wall of the acinar cavity encircling the apical margins of the secretory cells. The distal apical surface of the intercalary cell is covered with a thin cuticle resembling that of the corresponding cells in some acarine and myriapod glands. Axon endings form regular synaptic structures on the body of the intercalary cell implying nerve regulation of the gland activity.  相似文献   

12.
Summary The functional morphology of the mammiliform penial glands ofLittorina saxatilis has been investigated with both light and electron microscopy. These penial glands line the ventral edge of the penis and orient with the female mantle during copulation. Secretions are released from the penial glands to this interface where they probably function in adhesion. The penial gland secretions comprise heterogeneous granules as well as apocrine and mucous secretions. The heterogeneous granules are produced in separate multicellular glands arranged in a series of lobes that lie outside a thick smooth muscle layer enclosing the lumen. Each glandular lobe is surrounded by a thin layer of smooth muscle. Secretions are transported in individual cellular processes that pass through the thick smooth muscle layer and empty into the lumen. Surrounding the lumen is an epithelium containing apocrine secretory cells as well as occasional goblet-type, mucous cells. The combined action of the muscles forces secretions out of the lumen through the penial papilla, onto the external surface of the mammiliform penial gland. Longitudinal muscles extend into the penial papilla enabling its protrusion or retraction. Retraction of the penial papilla following secretion release is thought to create negative pressure beneath the penial gland producing suction adhesion. The visco-elastic properties of the penial gland secretion are qualitatively different from foot mucus and may represent specialization to an adhesive function.  相似文献   

13.
Ultrastructure of male reproductive accessory glands and ejaculatory duct in the Queensland fruit fly (Q-fly), Bactrocera tryoni, were investigated and compared with those of other tephritid flies. Male accessory glands were found to comprise one pair of mesodermic glands and three pairs of ectodermic glands. The mesodermic accessory glands consist of muscle-lined, binucleate epithelial cells, which are highly microvillated and extrude electron-dense secretions by means of macroapocrine transport into a central lumen. The ectodermic accessory glands consist of muscle-lined epithelial cells which have wide subcuticular cavities, lined with microvilli. The electron-transparent secretions from these glands are first extruded into the cavities and then forced out through small pores of the cuticle into the gland lumen. Secretions from the two types of accessory glands then flow into the ejaculatory duct, which is highly muscular, with epithelial cells rich in rough endoplasmic reticulum and lined with a thick, deeply invaginated cuticle. While there are some notable differences, reproductive accessory glands of male Q-flies generally resemble those of the olive fruitfly, Bactrocera oleae, and to a lesser extent the Mediterranean fruit fly, Ceratitis capitata.  相似文献   

14.
The lateral antennular flagellum of decapod crustaceans bears unique olfactory sensilla, namely the aesthetascs, and other sensilla types. In this study, we identify a new major tissue in the lateral flagellum of the Caribbean spiny lobster, Panulirus argus, namely “aesthetasc tegumental glands” (ATGs), based on immunostaining with antibodies against CUB serine protease (Csp), in situ hybridization with csp-specific probes, labeling with the F-actin marker phalloidin, labeling with the nuclear marker Hoechst 33258, and staining with methylene blue. Each ATG has 12–20 secretory cells arranged in a rosette. Each secretory cell has a Csp-immunoreactive basal portion and an apical portion containing granular material (metachromatic staining indicative of acid mucopolysaccharides). At the center of each secretory rosette is a phalloidin-positive common locus that gives rise to a main drainage duct projecting toward the cuticle. Scanning electron and light microscopy show that thin ducts traverse the cuticle and connect to “peg pores” proximal to the bases of the aesthetascs, with 3.4 peg pores per aesthetasc. Since the number of common loci is correlated with the number of peg pores, we conclude that each pore represents the outlet of one ATG, and that the secretions are released from them. We conclude further that ATGs and aesthetascs are functionally linked. We hypothesize that ATG secretions have antifouling and/or friction-reducing properties, and that they are spread over the surface of the aesthetascs by antennular grooming. A review of the literature suggests that ATGs are common in decapod crustacean antennules, and that rosette glands and grooming might be functionally coupled in other body areas.This study was supported by NSF IBN 0077474 and NIH DC00312.  相似文献   

15.
The structural organization of the nuclear ribosomal DNA (rDNA) of Humulus lupulus, H. japonicus and Cannabis sativa was determined by restriction site mapping. A high degree of DNA sequence similarity was evident in the coding regions of the rDNA repeats of the taxa and supports the placement of Cannabis and Humulus in one family, Cannabaceae. However, the presence of a BstEII site, an additional SacI site, absence of the SpeI site and positional differences of the SspI sites in the 25 S gene distinguished H. japonicus from H. lupulus. Humulus lupulus has an additional EcoRV site in the IGS region. A XhoI site in the 18S region of C. sativa distinguishes it from the two hop species. The diagnostic differences in the IGS of C. sativa include the EcoRI, HindIII and XhoI sites. These sites were not detected in the IGS of the two hop species.  相似文献   

16.
The ultrastructure of the amphidial, oesophageal and excretory glands of N. americanus is described. There are two amphidial glands, and each is attached to a lateral hypodermal cord. Anteriorly the glands become associated with the amphidial sense organs. The amphidial glands synthesize complex secretion granules which appear to release their contents into the sense organ. Secretions thus pass over the amphidial cilia and exit via the amphidial pore. It is suggested that the secretory activity of these glands is under direct nervous control. There are three oesophageal glands, and each synthesizes dense secretion granules. The secretions of the oesophageal glands are released into the lumen of the oesophagus and into the buccal capsule. The two excretory glands are ventral in position and connected to the tubular excretory system. These glands synthesize secretion granules of varying density. Secretions from the excretory glands may exit via the excretory pore, or pass back into the tubular excretory system, or both.  相似文献   

17.
Summary Complex carbohydrate components of secretory granules and the glycocalix were analysed in surface epithelia, endoepithelial glands and exoepithelial tubuloalveolar glands of the biliary-ductular system (guinea pig). Brunner glands and pyloric glands were studied for comparison. The columnar epithelial cells of the gallbladder and biliary ducts displayed a well-developed PAS-positive apical glycocalix. These materials strongly bound Ricinus communis AI, Ulex europaeus I, Lotus tetragonolobus A and wheat-germ-A lectins. With the exception of Lotus A lectin which did not bind at all, the same lectins stained the basolateral cell surface. The secretory granules in the supranuclear regions of surface epithelia and in the exoepithelial glands strongly bound Ricinus A I, Ulex europaeus I, wheat-germ-A and Helix pomatia lectins. Concanavalin A was less intensively bound by the secretions of tubuloalveolar glands than by the secretory granules in surface epithelia. The luminal and basolateral cell surfaces of glandular cells in the exoepithelial glands were stained by the same spectrum of lectins as were the less distinct. In the guinea pig, the lectin-binding patterns of tubuloalveolar glands in the biliary ducts closely resembled those of Brunner glands and pyloric glands. The secretions of the tubuloalveolar glands were different from the secretion of surface epithelia, as they bound Concanavalin A less intensively.  相似文献   

18.
Summary The ventral surface ofHolothuria forskali (Holothuroida, Aspidochirotida) is almost completely covered by small-sized podia that are locomotory. Each podium consists of a stem that allows the podium to lengthen, to flex, and to retract, and this is topped by a disc that allows the podium to adhere to the substratum during locomotion. Podia ofH. forskali do not end in a sucker and their adhesion to the substratum thus relies entirely on the disc epidermal secretions. The disc epidermis is made of five cell types: non-ciliated secretory cells of two different types that contain granules whose content is either mucopolysaccharidic (NCS1 cells) or mucopolysaccharidic and proteinic in nature (NCS2 cells), ciliated secretory cells containing small granules of unknown nature (CS cells), cilitated nonsecretory cells (CNS cells), and support cells. The cilia ofCS cells are subcuticular whereas those ofCNS cells, although also short and rigid, traverse the cuticle and protrude in the outer medium. During locomotion, epidermal cells of the podial disc are presumably involved in an adhesive/de-adhesive process functioning as a duogland adhesive system. Adhesive secretions would be produced byNCS1 andNCS2 cells and de-adhesive secretion byCS cells. All these secretions would be controlled by stimulations of the two types of ciliated cells (receptor cells) which presumably interact with the secretory cells by way of the nerve plexus. The lack of suckers and the coexistence of two adhesive cell types in the disc epidermis give the locomotory podia ofH. forskali a compromise structure which would perhaps explain their ability to move as efficiently along soft and hard substrata.  相似文献   

19.
Summary The spiral organs of Nereis have been shown to be compound glands and not photoreceptors. The ducts of two or three types of secretory cells attach themselves in a serial manner to a spirally wound axial columella which lies just below the cuticle. The large intra-cellular ducts terminate in a number of fine ducts which penetrate the columella and open through it into the lumen of the gland. This communicates to the outside through a pore in the cuticle. The secretions are muco-polysaccharides which are probably mixed in the lumen before discharge.We should like to acknowledge the support of this work by the Science Research Council.  相似文献   

20.
Observations are reported on the ultrastructure of the buccal cavity, body cuticle, spermatids, spermatozoa, male genitalia, and caudal glands of Gonionchus australis. The buccal cuticle is a continuation of the pharyngeal cuticle. Anteriorly it is secreted by arcade tissue and overlaps the mouth rim; laterally it forms longitudinal tooth ridges. The non-annulated cephalic cuticle differs sharply from the remainder of the body wall cuticle. The cortical and basal zones become much thinner, while a largely structureless, lucent median zone expands to fill the bulk of the lips and lip flaps. Spermatids possess fibrous bodies, multimembrane organelles, mitochondria, and compact chromatin. The spermatozoa of G. australis resemble those of most other nematodes by the absence of the nuclear envelope and presence of fibrous bodies, mitochondria, and compact chromafin. The ejaculatory duct possesses microvilli. Two ejaculatory glands lie beside the duct. Two neurons are located within each spicule and each part of the paired gubernaculum. Caudal gland nuclei are large, with dispersed chromatin. The ducts of all three caudal glands are filled with secretory vesicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号