首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
Translation of the stationary phase sigma factor RpoS is stimulated by at least two small RNAs, DsrA and RprA. DsrA disrupts an inhibitory secondary structure in the rpoS leader mRNA by pairing with the upstream RNA. Mutations in rprA and compensating mutations in the rpoS leader demonstrate that RprA interacts with the same region of the RpoS leader as DsrA. This is the first example of two different small RNAs regulating a common target. Regulation of these RNAs differs. DsrA synthesis is increased at low temperature. We find that RprA synthesis is regulated by the RcsC/RcsB phosphorelay system, previously found to regulate capsule synthesis and promoters of ftsZ and osmC. An rcsB null mutation abolishes the basal level, whereas mutations in rcsC that activate capsule synthesis also activate expression of the rprA promoter. An essential site with similarity to other RcsB-regulated promoters was defined in the rprA promoter. Activation of the RcsC/RcsB system leads to increased RpoS synthesis, in an RprA-dependent fashion. This work suggests a new signal for RpoS translation and extends the global regulation effected by the RcsC/RcsB system to coregulation of RpoS with capsule and FtsZ.  相似文献   

4.
As part of our attempt to map the impact of acetyl phosphate (acetyl approximately P) on the entire network of two-component signal transduction pathways in Escherichia coli, we asked whether the influence of acetyl approximately P on capsular biosynthesis and flagellar biogenesis depends on the Rcs phosphorelay. To do so, we performed a series of epistasis experiments: mutations in the components of the pathway that controls acetyl approximately P levels were combined with mutations in components of the Rcs phosphorelay. Cells that did not synthesize acetyl approximately P produced no capsule under normally permissive conditions, while those that accumulated acetyl approximately P synthesized capsule under conditions previously considered to be non-permissive. Acetyl approximately P-dependent capsular biosynthesis required both RcsB and RcsA, while the lack of RcsC restored capsular biosynthesis to acetyl approximately P-deficient cells. Similarly, acetyl approximately P-sensitive repression of flagellar biogenesis was suppressed by the loss of RcsB (but not of RcsA), while it was enhanced by the lack of RcsC. Taken together, these results show that both acetyl approximately P-sensitive activation of capsular biosynthesis and acetyl approximately P-sensitive repression of flagellar biogenesis require the Rcs phosphorelay. Moreover, they provide strong genetic support for the hypothesis that RcsC can function as either a kinase or a phosphatase dependent on environmental conditions. Finally, we learned that RcsB and RcsC inversely regulated the timing of flagellar biogenesis: rcsB mutants elaborated flagella prematurely, while rcsC mutants delayed their display of flagella. Temporal control of flagella biogenesis implicates the Rcs phosphorelay (and, by extension, acetyl approximately P) in the transition of motile, planktonic individuals into sessile biofilm communities.  相似文献   

5.
6.
7.
Colanic acid capsule synthesis in Escherichia coli K-12 is regulated by RcsB and RcsC. The amino acid sequences of these two proteins, deduced from the nucleotide sequence reported here, demonstrate their homology to environmentally responsive two-component regulators that have been reported in both gram-positive and gram-negative bacteria. In our model, RcsC acts as the sensor and RcsB acts as the receiver or effector to stimulate capsule synthesis from cps genes. In addition, RcsC shows limited homology to the other effectors in its C terminus. Fusions of rcsC to phoA that resulted in PhoA+ strains demonstrated that RcsC is a transmembrane protein with a periplasmic N-terminal domain and cytoplasmic C-terminal domain. Additional control of this regulatory network is provided by the dependence on the alternate sigma factor, RpoN, for the synthesis of RcsB. The rcsB and rcsC genes, which are oriented convergently with their stop codons 196 base pairs apart, are separated by a long direct repeat including two repetitive extragenic palindromic sequences.  相似文献   

8.
9.
The tolQRABpal cluster of Escherichia coli K-12 encodes proteins involved in the maintenance of cell-envelope integrity. In addition, toi/pal mutations result in a mucoid colony phenotype at low temperature. The synthesis of capsular polysaccharides by the cps genes is controlled by the positive regulator RcsA and the two-component RcsC/RcsB system. It was shown that the mucoid phenotype of the tol/pal mutants was due to an rcsCB-dependent activation of the cps genes. Furthermore, we have identified a mutation in the rcsC gene that decreased the activity of a tolA-lac operon fusion independently of RcsA and partially independently of RcsB activators. The corresponding rcsC338 mutation resulted in a Glu to Lys substitution at residue 338 of RcsC. This mutation induced mucoidy even at high temperature. We propose that RcsC modulates the phosphorylated forms of RcsB and an uncharacterized regulatory protein involved in the control of the tolQRA genes in an opposite manner. Moreover, our findings strengthen the previous suggestion that RcsC senses some alterations in the cell surface such as those induced by tol, pal or rfa mutations, and activates capsule synthesis to protect the cell against deleterious agents.  相似文献   

10.
11.
Escherichia coli and other enteric microorganisms produce an extracellular polysaccharide capsule, called colanic acid, under certain environmental conditions. This capsular synthesis is regulated by the RcsC (sensor kinase)→YojN (phosphotransfer intermediate)→RcsB (response regulator) phosphorelay signal transduction under certain growth conditions. Nonetheless, little is known about signals that exaggerate the Rcs-system. To gain insight into signals that activate the Rcs-system, here we searched for genes that activate the Rcs-system, provided that those on a multicopy plasmid were introduced into E. coli. We identified several such genes, namely, rcsB, rcsA, djlA, lolA, and ompG. The DjlA, LolA, and OmpG proteins are particularly interesting in that they are all located on the cell surface, where the primary sensor RcsC histidine-kinase is localized. Implications of these findings are discussed with special reference to the mechanism by which RcsC perceives external signals.  相似文献   

12.
13.
The synthesis of the Escherichia coli capsular polysaccharide varies with growth medium, temperature of growth, and genetic background. lac fusions to genes necessary for capsule synthesis (cps) demonstrated that these genes are regulated negatively in vivo by the lon gene product. We have now isolated, characterized, and mapped mutations in three new regulatory genes (rcs, for regulator of capsule synthesis) that control expression of these same fusions. rcsA and rcsB are positive regulators of capsule synthesis. rcsA is located at min 43 on the E. coli map, whereas rcsB lies at 47 min. rcsC, a negative regulator of capsule synthesis, is located at min 47, close to rcsB. All three regulatory mutations are unlinked to either the structural genes cpsA-F or lon. Mutations in all three rcs genes are recessive to the wild type. We postulate that lon may regulate capsule synthesis indirectly, by regulating the availability of one of the positive regulators.  相似文献   

14.
15.
Insertion of factor MudJ in the intergenic region between divergent genes yrfF and yrfE, at centisome 76 in the genome of Salmonella enterica serovar Typhimurium LT2, confers the characteristics recently described for mucM mutants, i.e. mucoidy and resistance to mecillinam. Cloning of the intergenic region plus either the yrfF or the yrfE gene in a multicopy plasmid showed that only the plasmid carrying the yrfF gene complemented mucM mutants, thus suggesting that mucM mutations are in fact yrfF mutations. A null yrfF mutation obtained by insertion of a kanamycin cassette into the yrfF open reading frame (yrfF28::Kan) produced abortive colonies when transduced to a wild-type strain but was normally accepted by rcsB, rcsC or yojN strains. Neither mutations preventing synthesis of the capsular exopolysaccharide colanic acid (cps, galE) nor rcsA mutations, which reduce expression of cps genes, conferred tolerance to the lethal yrfF28::Kan mutation. Spontaneous suppressor mutations arose very frequently in abortive yrfF28::Kan colonies, and all of them affected either rcsC, yojN, or rcsB genes. Thus, the lethal effect caused by inactivation of gene yrfF appears to be mediated by a function that is dependent on the rcsC-yojN-rcsB phosphorelay system but does not involve synthesis of colanic acid.  相似文献   

16.
为了探讨转录调控子Rcs AB对靶基因的转录调控作用,构建肺炎克雷伯菌RcsA和RcsB的重组质粒,之后诱导蛋白表达,提取纯化后测定其活性。PCR得到rcsA、rcsB片段,分别将两DNA片段克隆至表达载体pMAL-C5X、pET28a,构建重组质粒。再将重组质粒导入E. coli BL21(DE3)菌株中,经IPTG诱导后收集菌体,超声破碎。破碎后的上清过柱、透析纯化,得到高纯度的蛋白,通过EMSA进行蛋白活性鉴定。RcsA,RcsB蛋白成功表达纯化,并能够与靶基因结合,初步证明蛋白具有生物学活性。成功制备有生物学活性的RcsA、RcsB蛋白,为进一步研究RcsAB蛋白复合物特异的生物学功能提供物质基础。  相似文献   

17.
Bacterial pathogenesis relies on regulators that activate virulence genes. Some of them act, in addition, as repressors of specific genes. Intracellular-growth-attenuator-A (IgaA) is a Salmonella enterica membrane protein that prevents overactivation of the RcsC-YojN-RcsB regulatory system. This negative control is critical for growth because disruption of the igaA gene is only possible in rcsC, yojN or rcsB strains. In this work, we examined the contribution of this regulatory circuit to virulence. Viable igaA point mutant alleles were isolated and characterized. These alleles encode IgaA variants leading to different levels of activation of the RcsC-YojN-RcsB system. IgaA-mediated repression of the RcsB-YojN-RcsC system occurred at the post-translational level, as shown by chromosomal epitope tagging of the rcsC, yojN and rcsB genes. The activity of the RcsC-YojN-RcsB system, monitored with the product of a tagged gmd-3xFLAG gene (positively regulated by RcsC-YojN-RcsB), was totally abolished by wild-type bacteria in mouse target organs. Such tight repression occurred only in vivo and was mediated by IgaA. Shutdown of the RcsC-YojN-RcsB system is a requisite for Salmonella virulence since all igaA point mutant strains were highly attenuated. The degree of attenuation correlated to that of the activation status of RcsC-YojN-RcsB. In some cases, the attenuation recorded was unprecedented, with competitive index (CI) values as low as 10(-6). Strikingly, IgaA is a protein absolutely dispensable for virulence in mutant strains having a non-functional RcsC-YojN-RcsB system. To our knowledge, IgaA exemplifies the first protein that contributes to virulence by exclusively acting as a negative regulator upon host colonization.  相似文献   

18.
19.
Escherichia coli and other enteric microorganisms produce an extracellular polysaccharide capsule, called colanic acid, under certain environmental conditions. This capsular synthesis is regulated by the RcsC (sensor kinase)-->YojN (phosphotransfer intermediate)-->RcsB (response regulator) phosphorelay signal transduction under certain growth conditions. Nonetheless, little is known about signals that exaggerate the Rcs-system. To gain insight into signals that activate the Rcs-system, here we searched for genes that activate the Rcs-system, provided that those on a multicopy plasmid were introduced into E. coli. We identified several such genes, namely, rcsB, rcsA, djlA, lolA, and ompG. The DjlA, LolA, and OmpG proteins are particularly interesting in that they are all located on the cell surface, where the primary sensor RcsC histidine-kinase is localized. Implications of these findings are discussed with special reference to the mechanism by which RcsC perceives external signals.  相似文献   

20.
W Ebel  G J Vaughn  H K Peters  rd    J E Trempy 《Journal of bacteriology》1997,179(21):6858-6861
Capsule gene (cps) expression, which normally occurs at low levels in Escherichia coli lon+ cells, increased 38-fold in lon+ cells carrying a Tn10::delta kan insertion mapping to 24 min on the E. coli chromosome. Null mutations in rcsA, rcsB, or rcsC abolished the effect of the Tn10::delta kan insertion. Sequencing of both sides of the Tn10::delta kan insertion localized the insertion to the previously reported mdoH gene, which encodes a protein involved in biosynthesis of membrane-derived oligosaccharides (MDOs). A model suggesting that the periplasmic levels of MDOs act to signal RcsC to activate cps expression is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号