首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Carotenoid accumulation in Haematococcus pluvialis in mixotrophic growth   总被引:5,自引:0,他引:5  
The microalga Haematococcus pluvialis was cultured with NaNO3 from 0 to 1 g l–1 and optimal growth was obtained at 0.15 g l–1. Sodium acetate and malonate (from 0 to 2% w/v) enhanced the accumulation of astaxanthin three and five times higher, respectively, than in autotrophic control cultures. However, high concentration of those compounds strongly inhibited growth. The ratio chlorophyll a/total carotenoids was a good indicator of the extent of nitrogen deficiency in the cells.  相似文献   

2.
The microalga Haematococcus pluvialis Flotow is one of the natural sources of astaxanthin, a pigment widely used in salmon feed. This study was made to discover optimal conditions for biomass and astaxanthin production in H. pluvialis from Steptoe, Nevada (USA), cultured in batch mode. Growth was carried out under autotrophic (with NaNO3, NH4Cl and urea) and mixotrophic conditions (with 4, 8, 12 mM sodium acetate) under two photon flux densities (PFD) (35 and 85 mumol m-2 s-1). The carotenogenesis was induced by 1) addition of NaCl (0.2 and 0.8%), 2) N-deprivation and 3) high PFD (150 mumol m-2 s-1). Total carotenoids were estimated by spectrophotometry and total astaxanthin by HPLC. Ammonium chloride was the best N-source for growth (k = 0.7 div day-1, 228-258 mg l-1 and 2.0 x 10(5)-2.5 x 10(5) cells ml-1 at both PFD, respectively). With increasing acetate concentration, a slight increment in growth occurred only at 85 mumol m-2 s-1. Light was the best inductive carotenogenic factor, and the highest carotenoid production (4.9 mg l-1, 25.0 pg cell-1) was obtained in cultures pre-grown in nitrate at low light. The NaCl caused an increase in carotenoid content per cell at increasing salt concentrations, but resulted in a high cell mortality and did not produce any increment in carotenoid content per volume compared to cultures grown at 150 mumol m-2 s-1. The highest carotenoid content per cell (22 pg) and astaxanthin content per dry weight (10.3 mg g-1) (1% w/w) were obtained at 85 mumol m-2 s-1 with 0.8% NaCl.  相似文献   

3.
The freshwater microalga Haematococcus pluvialis exhibits a unique morphological response to environmental stress, accumulating carotenoid pigment during encystment. The complexity of characterizing the different cell stages and monitoring the pigment cell content during the life cycle of this microalga is one of the main problems reported when assessing astaxanthin accumulation and degradation. Therefore, with the aim of studying the potential encystment response in this microalga by means of flow cytometry (FCM), we induced oxidative stress in cultures of vegetative growing cells by treating them with paraquat, a known generator of superoxide anion radicals. Two flow cytometric approaches were successfully used to monitor the effect of oxidative stress on morphological changes and genesis of carotenoids in H. pluvialis: (1) a cytometric characterization of different cell types based on analysis of the fluorescence of chlorophyll a vs the fluorescence of astaxanthin, and (2) staining with the fluorochromes hydroethidium (HE) and dihydrorhodamine 123 (DHR), in order to measure the in vivo intracellular levels of reactive oxygen species (ROS). FCM data showed that astaxanthin accumulation during encystment hampers the production of ROS. Furthermore, the cell content of astaxanthin seems to be a good indicator of the extent to which H. pluvialis cells undergo oxidative stress, and also of how the cells defend themselves under stress conditions.  相似文献   

4.
The present paper makes a comparative analysis of the outdoor culture of H. pluvialis in a tubular photobioreactor and a bubble column. Both reactors had the same volume and were operated in the same way, thus allowing the influence of the reactor design to be analyzed. Due to the large changes in cell morphology and biochemical composition of H. pluvialis during outdoor culture, a new, faster methodology has been developed for their evaluation. Characterisation of the cultures is carried out on a macroscopic scale using a colorimetric method that allows the simultaneous determination of biomass concentration, and the chlorophyll, carotenoid and astaxanthin content of the biomass. On the microscopic scale, a method was developed based on the computer analysis of digital microscopic images. This method allows the quantification of cell population, average cell size and population homogeneity. The accuracy of the methods was verified during the operation of outdoor photobioreactors on a pilot plant scale. Data from the reactors showed tubular reactors to be more suitable for the production of H. pluvialis biomass and/or astaxanthin, due to their higher light availability. In the tubular photobioreactor biomass concentrations of 7.0 g/L (d.wt.) were reached after 16 days, with an overall biomass productivity of 0.41 g/L day. In the bubble column photobioreactor, on the other hand, the maximum biomass concentration reached was 1.4 g/L, with an overall biomass productivity of 0.06 g/L day. The maximum daily biomass productivity, 0.55 g/L day, was reached in the tubular photobioreactor for an average irradiance inside the culture of 130 microE/m2s. In addition, the carotenoid content of biomass from tubular photobioreactor increased up to 2.0%d.wt., whereas that of the biomass from the bubble column remained roughly constant at values of 0.5%d.wt. It should be noted that in the tubular photobioreactor under conditions of nitrate saturation, there was an accumulation of carotenoids due to the high irradiance in this reactor, their content in the biomass increasing from 0.5 to 1.0%d.wt. However, carotenoid accumulation mainly took place when nitrate concentration in the medium was below 5.0mM, conditions which were only observed in the tubular photobioreactor. A similar behaviour was observed for astaxanthin, with maximum values of 1.1 and 0.2%d.wt. measured in the tubular and bubble column photobioreactors, respectively. From these data astaxanthin productivities of 4.4 and 0.12 mg/L day were calculated for the tubular and the bubble column photobioreactors. Accumulation of carotenoids was also accompanied by an increase in cell size from 20 to 35 microm, which was only observed in the tubular photobioreactors. Thus it may be concluded that the methodology developed in the present study allows the monitoring of H. pluvialis cultures characterized by fast variations of cell morphology and biochemical composition, especially in outdoor conditions, and that tubular photobioreactors are preferable to bubble columns for the production of biomass and/or astaxanthin.  相似文献   

5.
Extending the carotenoid pathway to astaxanthin in plants is of scientific and industrial interest. However, expression of a microbial β-carotene ketolase (BKT) that catalyses the formation of ketocarotenoids in transgenic plants typically results in low levels of astaxanthin. The low efficiency of BKTs in ketolating zeaxanthin to astaxanthin is proposed to be the major limitation for astaxanthin accumulation in engineered plants. To verify this hypothesis, several algal BKTs were functionally characterized using an Escherichia coli system and three BKTs were identified, with high (up to 85%), moderate (~38%), and low (~1%) conversion rate from zeaxanthin to astaxanthin from Chlamydomonas reinhardtii (CrBKT), Chlorella zofingiensis (CzBKT), and Haematococcus pluvialis (HpBKT3), respectively. Transgenic Arabidopsis thaliana expressing the CrBKT developed orange leaves which accumulated astaxanthin up to 2 mg g(-1) dry weight with a 1.8-fold increase in total carotenoids. In contrast, the expression of CzBKT resulted in much lower astaxanthin content (0.24 mg g(-1) dry weight), whereas HpBKT3 was unable to mediate synthesis of astaxanthin in A. thaliana. The none-native astaxanthin was found mostly in a free form integrated into the light-harvesting complexes of photosystem II in young leaves but in esterified forms in senescent leaves. The alteration of carotenoids did not affect chlorophyll content, plant growth, or development significantly. The astaxanthin-producing plants were more tolerant to high light as shown by reduced lipid peroxidation. This study advances a decisive step towards the utilization of plants for the production of high-value astaxanthin.  相似文献   

6.
Water-dispersible beadlets of carotenoids were used as supplements for human umbilical vein endothelial cells (HUVECs), human peripheral blood mononuclear cells (PBMCs) and human monocytes. Stability, cellular association and cytotoxicity of the carotenoid beadlets were compared with carotenoids delivered with tetrahydrofuran (THF). Incubations with lycopene, beta-carotene, lutein and astaxanthin dissolved in THF resulted in a lower stability in the medium, lower cellular association, and a higher standard deviation. Beadlets provided 60, 4, 6, and 2 times greater accumulation of lycopene, beta-carotene, lutein and astaxanthin, respectively, by PBMCs than THF. The cellular association of carotenoids delivered by THF seems to be more carotenoid-specific than when carotenoids are delivered by beadlets. After 48 h of incubation under cell culture conditions all of the four carotenoids (1 microM) delivered by beadlets to the medium showed a reduction less than 30%. In addition, no cytotoxic effect of the carotenoid beadlets or the vehicle alone was detected in a concentration range of 0.5-5 microM. The results show that beadlets are a non-toxic vehicle for supplementing and stabilizing carotenoids in culture media offering a reasonable compromise in term of cell accumulation efficiency.  相似文献   

7.
高温湿热酸法破壁提取法夫酵母胞内虾青素   总被引:5,自引:0,他引:5  
法夫酵母是一种能积累虾青素的红酵母, 对其进行破壁是当前虾青素工业化提取生产的瓶颈工艺。研究在高温湿热条件下,低浓度盐酸对法夫酵母破壁而提取其胞内虾青素的工艺。探讨了不同破壁温度、盐酸浓度、液料比与破壁处理时间等因素对法夫酵母破壁后虾青素及类胡萝卜素提取率的影响, 确定了高温湿热酸法破壁提取虾青素的最佳条件为: 饱和蒸汽压力 0.1 MPa (121°C), 盐酸浓度0.5 mol/L, 液料比 (V/W)30 mL/g, 破壁时间2 min。在最佳条件下进行中试放大实验, 可得到虾青素与类胡萝卜素的提取率分别为: (84.8±3.2)%, (93.3±2)%。经优化后的新破壁工艺安全高效, 不会有毒性残留, 具有良好的工业应用前景。  相似文献   

8.

The ratio of carbon to nitrogen (C/N) in media plays a crucial role in the production of microbial carotenoids. However, the effects of a high C/N ratio on carotenoid production are ambiguous, and the mechanism of how C/N ratio affects astaxanthin accumulation in X. dendrorhous is unclear. In this study, the influence of C/N ratio on astaxanthin biosynthesis in X. dendrorhous at a fixed nitrogen concentration was investigated, and comparative proteomics were applied to address how C/N ratio affects cell growth and astaxanthin accumulation in X. dendrorhous. The results showed that cell growth and astaxanthin accumulation in X. dendrorhous were strongly related to the ratio of carbon to nitrogen with increasing C/N ratio in medium. However, the astaxanthin content per cell showed an inverse relationship, decreasing with an increasing C/N ratio. Differential proteomics showed the proteins with highest degree of change in expression under varying C/N ratios were mainly involved in carbohydrate metabolic pathways and carotenogenesis metabolism. In addition, several redox- and stress-associated proteins were up-regulated along with the carotenogenesis proteins, implying the environmental stress may affect metabolism and astaxanthin synthesis. A possible regulatory mechanism in response to glucose in X. dendrorhous is discussed.

  相似文献   

9.
Fully synchronised germination of Haematococcus pluvialis astaxanthin-replete aplanospores was induced by transfer to nitrogen-sufficient conditions under either high or low light intensities, and growth, pigment content and nitrogen consumption were monitored during the cell cycle. No germination of the aplanospores was achieved in the absence of nitrate, even when cells were transferred at low light intensities. On the other hand, cell density and chlorophyll concentration increased dramatically and astaxanthin concentration decreased in N-sufficient cultures due to the germination of 100% of the aplanospores, as demonstrated by flow cytometry. No significant effect of light intensity was observed on the degradation of astaxanthin during germination. In germinated cultures, nitrogen was depleted more rapidly under high light conditions, which resulted in earlier entry into the aplanospore stage and accumulation of astaxanthin. Germination of aplanospores accompanied by astaxanthin degradation could also be obtained in the dark in nutrient-sufficient conditions although at a much lower efficiency. The results demonstrate that nutrient availability is the main factor controlling the transition between red and green stages of H. pluvialis, with astaxanthin being accumulated only when cell division has ceased. High light levels accelerate the process by increasing the rate of nutrient depletion and providing more energy for astaxanthin synthesis.  相似文献   

10.
Haematococcus green culture starved for either nitrogen or phosphate accumulated astaxanthin up to 4% cell dry wt (2.6 g l–1). While under nitrogen starvation astaxanthin accumulation was faster (maximum achieved after 8 days in comparison to 14 days in the phosphate-starved culture) and accompanied by a drop in the chlorophyll content per cell down to 50% of its original value (30 pg cell–1); in the phosphate-starved culture this parameter did not change. HPLC profiles of carotenoids monitored along the starvation process revealed that astaxanthin esters accounted for more than 99% of total carotenoids at the end of the exposure period at both starvations.  相似文献   

11.
极地雪藻在不同培养基中生长和虾青素累积的研究   总被引:1,自引:0,他引:1  
在常温(23℃)和低温(10℃)条件下,用BBM、Bold 1NV、TAP和MCM四种培养基对极地雪藻进行培养。通过对生长速率、细胞数、A535值及虾青素累积量的测定,比较不同培养基、不同培养条件对极地雪藻的生长与虾青素累积的影响。结果表明,低温有利于极地雪藻的生长和虾青素的累积,BBM培养基比其它培养基更适合极地雪藻的生长,10℃时条件下其生长速率最高,培养14d细胞数可达到3.53×10^6/mL;在高光强条件下培养15d后用BBM培养基培养的极地雪藻细胞的虾青素累积为其它培养基的2.21-3.59倍。  相似文献   

12.
The study evaluated the effect of media based on plant extracts: potato, carrot and barley malt broth, on growth and astaxanthin synthesis by yeast Xanthophyllomyces dendrorhous DSM 5626 and its mutants. The carrot medium promoted carotenogenesis most effectively. In cultures on this medium the highest volumetric and cellular concentrations of astaxanthin were recorded for four out of five tested strains. Also the share of astaxanthin in the total carotenoids produced by the tested strains was the highest.  相似文献   

13.
为了评价虾青素高产菌株-法夫酵母JMU-MVP14的生产性能及建立虾青素高产发酵技术,通过测定糖、生物量、虾青素产量、总类胡萝卜素产量等发酵参数,用摇瓶试验对比了法夫酵母JMU-MVP14和出发菌株的差异,用7 L罐试验对比了pH值调控方式及补料培养基成分对发酵的影响,用1 m3罐试验评估了法夫酵母JMU-MVP14高密度发酵虾青素的产量水平。摇瓶发酵结果表明,法夫酵母JMU-MVP14虾青素及总类胡萝卜素的细胞产率分别达到6.01 mg/g及10.38 mg/g;7 L罐分批发酵试验结果表明,自动流加调  相似文献   

14.
This review describes the different approaches that have been used to manipulate and improve carotenoid production in Xanthophyllomyces dendrorhous. The red yeast X. dendrorhous (formerly known as Phaffia rhodozyma) is one of the microbiological production systems for natural astaxanthin. Astaxanthin is applied in food and feed industry and can be used as a nutraceutical because of its strong antioxidant properties. However, the production levels of astaxanthin in wild-type isolates are rather low. To increase the astaxanthin content in X. dendrorhous, cultivation protocols have been optimized and astaxanthin-hyperproducing mutants have been obtained by screening of classically mutagenized X. dendrorhous strains. The knowledge about the regulation of carotenogenesis in X. dendrorhous is still limited in comparison to that in other carotenogenic fungi. The X. dendrorhous carotenogenic genes have been cloned and a X. dendrorhous transformation system has been developed. These tools allowed the directed genetic modification of the astaxanthin pathway in X. dendrorhous. The crtYB gene, encoding the bifunctional enzyme phytoene synthase/lycopene cyclase, was inactivated by insertion of a vector by single and double cross-over events, indicating that it is possible to generate specific carotenoid-biosynthetic mutants. Additionally, overexpression of crtYB resulted in the accumulation of beta-carotene and echinone, which indicates that the oxygenation reactions are rate-limiting in these recombinant strains. Furthermore, overexpression of the phytoene desaturase-encoding gene (crtI) showed an increase in monocyclic carotenoids such as torulene and HDCO (3-hydroxy-3',4'-didehydro-beta,-psi-carotene-4-one) and a decrease in bicyclic carotenoids such as echinone, beta-carotene and astaxanthin.  相似文献   

15.
M Geisert  T Rose  W Bauer  R K Zahn 《Bio Systems》1987,20(2):133-142
Pigment analysis of Nanochlorum eucaryotum on two strains grown under different gaseous conditions was performed. Air-gassed control cultures did not differ qualitatively with respect to the content of chlorophylls a and b, carotenes alpha and beta, lutein, violaxanthin, neoxanthin and cryptoxanthin in comparison with cultures grown under natural gas. The absolute pigment content per cell increased in cultures grown with natural gas. Growth of N. eucaryotum depends on CO2 which is present in concentrations up to 2.0 vol% in natural gas. N. eucaryotum cannot utilize methane and is therefore not methylotrophic. In cultures of N. eucaryotum grown with natural gas and in air-gassed cultures under nitrogen deficient conditions the secondary carotenoids canthaxanthin and astaxanthin could be detected. In air-gassed cultures of strain N. eucaryotum Colona the same secondary carotenoids have been found, while secondary carotenoids were never found in strain N. eucaryotum Mainz. Cell walls of N. eucaryotum always contain sporopollenin as confirmed by isolation, elemental analysis, infrared absorption spectrophotometry, acetolysis-resistance and electron microscopy.  相似文献   

16.
斜生栅藻中虾青素的积累过程及其光合活性变化   总被引:1,自引:1,他引:0  
分析了斜生栅藻(Scenedesmus obliquus)在光温(30℃,180 μmol/m2·s)胁迫条件下积累虾青素的过程,观察了该过程中细胞形态及细胞光合生理的变化。胁迫条件下,细胞在48h内生成并积累了包括海胆酮、角黄素、金盏花黄素和金盏花红素在内的多种次生类胡萝卜素,并合成了虾青素及其酯。该过程中,细胞形态由两端尖细变得不规则、膨大,原来由4、8个细胞组成的定形群体变为游离的单个细胞或2个细胞组成的群体。藻细胞光合速率在24h内先下降后上升,而后又呈现下降趋势,从34.29 μmol O2/mg Chla/h迅速下降为5.21 μmol O2/mg Chla/h;呼吸速率在前24h内升高至60.37 μmol O2/mg Chla/h,而后缓慢下降到38.40 μmol O2/mg Chla/h;光合系统Ⅱ的活性随着胁迫时间的延续而逐步下降,较初始值降低了63.9%。结果表明,斜生栅藻细胞在高光照条件下可以合成虾青素,并通过调节光合速率、呼吸速率以及光合系统Ⅱ的效率来应对胁迫。  相似文献   

17.
Rainbow trout were fed a diet supplemented with astaxanthin (89 mg/kg) or canthaxanthin (116 mg/kg) in two different experiments: experiment 1 was designed to measure the kinetics of the appearance and disappearance of carotenoids in the serum; experiment 2 was undertaken to establish the serum dose-response to synthetic astaxanthin and canthaxanthin for immature rainbow trout. The serum carotenoid concentrations of immature rainbow trout increased when fish were fed carotenoid supplemented feed and then reached a plateau after 1 day of intake for astaxanthin and after 2 days for canthaxanthin. Circulating astaxanthin represented a value 2.3 times that of canthaxanthin. After dietary supplementation was discontinued, the serum carotenoid concentrations decreased within 3 days for both carotenoids. The average decreasing slopes for the two carotenoid pigments were parallel, indicating a similarity in the rate of which astaxanthin and canthaxanthin are utilized by rainbow trout. The serum dose-response of trout that received dietary keto-carotenoids increased with increasing pigment levels. The hypothesis that absorption of dietary carotenoids in 12.5–200 mg/kg range of concentration across the gut wall may be by passive diffusion is proposed.  相似文献   

18.
Carotenoid compositions of the flesh, skin, and ovaries were determined in sexually maturing and immature Arctic charr (Salvelinus alpinus) fed diets supplemented with astaxanthin (optical isomer ratio (3S,3'S):(3R,3'S; meso):(3R,3'R); 1:2:1). Astaxanthin comprised 64-79% of the flesh carotenoids, and the 3',4'-cis and 3',4'-trans glycolic isomers of idoxanthin, present in a 1:1 ratio, represented 20-35%. The flesh of the sexually maturing charr contained relatively more idoxanthin than that of sexually immature fish (20 vs 35% of total carotenoids), possibly being indicative of a higher metabolic turnover of astaxanthin in the latter. The relative proportions of flesh carotenoids were unaffected by sex. The relative carotenoid composition of ovaries was similar in sexually maturing and immature females. The 3',4'-cis and 3',4'-trans glycolic isomers of idoxanthin (ratio 0.7:1) were the major carotenoids (56% of total), followed by crustaxanthin (20%), and astaxanthin comprised less than 5% of ovarian carotenoids. Three glycolic isomers of crustaxanthin were detected (3,4,3',4'-di-cis-:3,4-cis-3',4'-trans-:3,4,3',4'-di-trans-glycolic isomer ratio 2.6:3.1:1) in the ovaries. Sex and maturity status had no apparent effect on the relative composition of skin carotenoids. The skin carotenoids consisted mainly of diesters (82-87% of total carotenoids) and monoesters (7-13% of total carotenoids). Saponification revealed that astaxanthin comprised 85% and idoxanthin 10% of total carotenoids, and minor amounts of tunaxanthin-, lutein-, and zeaxanthin-like metabolites were also present. Maturity status seems to be more important than sex in determining the relative carotenoid composition of the tissues of Arctic charr, with astaxanthin and its metabolites being selectively accumulated in different tissues.  相似文献   

19.
雨生红球藻的光周期效应   总被引:2,自引:0,他引:2  
雨生红球藻(Haematococcus pluvialis)是一种单细胞淡水绿藻, 是自然界已知的中虾青素含量最高的生物物种。通过分析3种光照强度(70、120和300 μmol·m–2·s–1)下雨生红球藻细胞形态、生长速率和虾青素含量的差异, 对其光周期效应进行了研究。结果表明, 不同光强下适宜雨生红球藻生长的光周期均为16小时光照/8小时黑暗, 光强为120 μmol·m–2·s–1时其细胞生长速率最大, 为0.43 d–1; 细胞内虾青素含量随着光强和光照时间的增加而增加, 在300 μmol·m–2·s–1光强下连续光照15天后, 藻细胞呈亮红色, 平均直径为21.02 μm, 最大虾青素值达39.40 pg·cell–1。  相似文献   

20.
Astaxanthin possesses higher antioxidant activity than other carotenoids and, for this and other reasons, has great commercial potential for use in the aquaculture, pharmaceutical, and food industries. The basidiomycetous yeast Xanthophyllomyces dendrorhous is one of the best natural producers of astaxanthin, but wild-type cells accumulate only a small amount of astaxanthin. In this study, we developed an efficient flow cytometry method to screen for astaxanthin-overproducing mutants of X. dendrorhous. We first examined the relationship between cellular astaxanthin content and the intensity of fluorescence emitted from the cell. Although the fluorescence emission maximum of astaxanthin dissolved in acetone occurred at 570 nm, intracellular astaxanthin content correlated better with emission at around 675 nm in different X. dendrorhous strains. Using this emission wavelength, we screened cells mutagenized with ethyl methanesulfonate and successfully isolated mutants that produced 1.5-3.8-fold more astaxanthin than parent cells. This method enabled us to obtain overproducers five times more efficient than conventional screening from plate culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号