首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
为研究冬眠季节的光照条件对贮脂类冬眠动物入眠的影响,在达乌尔黄鼠腹腔埋植体温记录元件iButton,在体重高峰后的下降阶段置于5℃和12L:12D的光照条件下,观察测定其冬眠模式和能量消耗。达乌尔黄鼠冬眠模式出现深冬眠型、少冬眠型和不冬眠型,蛰眠阵包括深冬眠阵、短冬眠阵和日眠阵。不同冬眠阵中最低体温、冬眠阵的持续时间、阵间产热的持续时间、冷却速率和复温速率差异显著;阵间产热的最高体温基本相同。平均每日能量消耗在日眠阵中最高、短冬眠阵中居中、深冬眠阵中最低。入眠时间多集中于黑暗时相,觉醒时间多集中于光照时相。本实验结果提示,在冬眠季节施加光照黑暗循环条件可减少达乌尔黄鼠冬眠的时间,升高阵间最低体温,缩短冬眠阵与阵间产热的持续时间,降低复温速率;增加冬眠期间能量消耗。入眠与觉醒受光照条件影响,具有明显的光暗节律。  相似文献   

2.
达乌尔黄鼠冬眠期间体温的变化和冬眠模式   总被引:2,自引:0,他引:2  
用植入式半导体温度记录元件iButton 记录了达乌尔黄鼠冬眠季节及其前后的体温,分析了其冬眠模式和体温调节特点。结果显示:1)实验室条件下,达乌尔黄鼠冬眠季节长短的个体差异较大,可以分成深冬眠型、
少冬眠型和不冬眠型三种类型;2)达乌尔黄鼠在冬季表现出深冬眠阵(最低体温Tbm in <20℃ ,冬眠阵的持续时间BD >24 h)、短冬眠阵(Tbmin < 20℃ , BD≤24h)和日眠阵(Tbmin ≥20℃ , BD≤24 h)3 种类型,最低体温分别
为2.54℃ ± 0.35℃ 、10.05℃ ± 1.97℃ 和23.09℃ ± 0.40℃ ,彼此之间差异显著。日眠阵阵间产热阶段的最高体温为38.09℃ ±0.17℃ ,高于深冬眠阵(37.31℃ ±0.15℃ )和短冬眠阵(37.22℃ ±0.31℃ ); 3)深冬眠阵和日
眠阵中最低体温均与环境温度显著相关,冬眠过程中的最低体温为-2.43℃ ;4)深冬眠过程中,多数个体可以短时(≤3 h)耐受- 2℃ ~ 0℃ 的低温,激醒或继续维持深冬眠,无致死效应,但长时间(15 h)或过度低温
(- 5℃ 以下)的条件下,深冬眠的达乌尔黄鼠被激醒(70% )或死亡(30% ),不能持续冬眠; 5)入眠前10 d体温日波动幅度显著增加,高于出眠后的日体温波动,且多数个体入眠前出现体温的“试降”。表明,冬眠前
入眠的准备阶段,动物的体温调节已开始发生变化;冬季日眠的调节机制可能与冬眠不同;短时- 2℃ ~ 0℃ 的体温对深冬眠的达乌尔黄鼠无致死效应。  相似文献   

3.
为了应对由冬季低温与食物匮乏所带来的挑战,动物进化出了不同的能量策略,如迁徙、换毛、贮食、储脂和蛰眠等,但个体间可能存在差异,且不同策略之间可能存在一定的权衡。有研究者认为,黑线毛足鼠(Phodopus sungorus)的贮食和日蛰眠等能量策略之间可能存在权衡。本研究测定了低温短光[(10±2)℃,光照与黑暗之比L︰D为8︰16]及自由取食或限食条件下黑线毛足鼠的体重、摄食量、贮食量、食物摄取总量、基础代谢率、体核温度与活动性等7项指标的个体差异,并探讨摄食(包括贮食)、基础代谢率与蛰眠之间是否存在权衡,以推测黑线毛足鼠对低温与食物匮乏能量响应策略的个体差异产生的原因。结果显示,在低温短光、自由取食条件下,摄食量无性别差异,雄性个体的体重大于雌性个体,体核温度及活动性低于雌性个体。在限食阶段且低温短光情况下,出现了蛰眠个体,蛰眠个体在自由取食阶段的活动性高于非蛰眠个体,即活动性高的个体更可能产生蛰眠。蛰眠个体与非蛰眠个体的基础代谢率无差异。但是,在蛰眠个体中,基础代谢率与蛰眠频率负相关,活动性与蛰眠持续时间负相关。在非蛰眠个体中,限食程度升高后活动量显著增加。此外,虽然与贮食和蛰眠可能存在负相关关系的预测相符,贮食个体均不蛰眠,但是动物是否贮食、贮食量以及食物摄取总量(包括贮食量)均与蛰眠无显著相关。本研究表明,能量对策之间的权衡并非发生于贮食和蛰眠之间,而是存在于基础代谢率、活动性与蛰眠之间,不蛰眠的个体倾向于降低活动性以节约能量,而基础代谢率和自由取食阶段活动性高的蛰眠个体则拥有更低的蛰眠表达。  相似文献   

4.
日蛰眠是哺乳动物中某些类群应对寒冷、食物短缺等不利环境条件,而在一天中的某个时段降低体温和代谢的一种重要生存适应策略。本文分析了文献报道的近百种已知日蛰眠哺乳动物的系统分类、地理分布、生活环境、体型及食性、体温和代谢率等特征。日蛰眠物种在系统分类上隶属于有袋类(Marsupialia)和胎盘类(Placentalia);这些物种大多分布于温带地区(纬度20°S~30°S和30°N~40°N),环境条件存在明显的季节变化及昼夜变化。日蛰眠动物体型相对较小,主要摄食营养丰富的食物,食草类动物很少日蛰眠。日蛰眠动物的平均蛰眠体温为19.75℃,蛰眠代谢率为基础代谢率的34%。动物通过日蛰眠节约能量,度过不良环境条件。日蛰眠的低代谢和低体温机制对人类健康和生物医学研究具有重要的理论和现实意义。  相似文献   

5.
小型哺乳动物生理生态学研究与进化思想   总被引:4,自引:1,他引:3  
动物生理生态学是一门利用生理学的手段和方法研究与动物的生存和繁殖相关的生态学问题的交叉学科,
旨在阐明动物对环境适应和进化的生理机制。在近70 年的发展历程中,进化生物学的思想和理论越来越紧密地
融入到生理生态学的研究中,同时生理生态学的研究结果也在充实着进化生物学理论的发展。本文根据作者多
年的研究经历,从动物的体型和代谢特征、消化生理、生态免疫和冬眠等几个侧面,简述了小型哺乳动物生理
生态学的某些研究进展和进化思想对该领域的影响。  相似文献   

6.
哺乳动物的冬眠是一种季节性异温状态,是对外界恶劣自然环境的一种适应策略。冬眠-阵间觉醒周期中,伴随着生理功能的剧烈变化,从冬眠期间整体代谢的抑制,到阵间觉醒时氧代谢的急剧增加,使动物体内产生了大量的氧自由基。然而,冬眠动物出眠时并未表现出明显的氧化损伤迹象,因此,冬眠哺乳动物被认为是一种天然的抗氧化损伤模型。本文从氧化应激的产生、活性氧的来源、抗氧化防御等方面综述了冬眠哺乳动物对氧化应激的防御,并从其抗氧化的分子调控方面分析了冬眠哺乳动物对氧化应激的适应机制。  相似文献   

7.
上海农田泽蛙蛰眠状况初步调查   总被引:3,自引:0,他引:3  
于2004~2005年冬季对上海农田泽蛙的蛰眠状况进行了初步调查。结果表明,农田中的路径、田埂和沟渠岸边地下洞穴是泽蛙的主要越冬场所。蛰眠洞穴共用率高达34.0%,超过62.2%的泽蛙与其它个体共用洞穴蛰眠,各共用洞穴内的泽蛙只数为2~6只不等。泽蛙主要利用已有的地下洞穴蛰眠。86.6%蛰眠期的泽蛙为1龄个体。  相似文献   

8.
中国哺乳动物生理生态学研究自20世纪50年代始,经过70多年的发展,已系统研究了分布于青藏高原、内蒙古草原、横断山脉等地理分布区的代表性物种的生理适应性,研究主题包括能量代谢和体温调节、冬眠(蛰眠)、水代谢、生态免疫、肠道菌群与宿主的能量代谢和产热调节,研究物种以小型哺乳动物为主。在新时期除了进一步加强对极端环境的生理适应研究外,也需关注大型动物对环境的生理适应,发展新兴领域如保护生理学等,同时要借助多组学技术、同位素技术、遥感技术、红外技术等,加强对动物生理适应的机理性探究。本文回顾了中国哺乳动物生理生态学的发展历程,总结了主要领域取得的重要进展。  相似文献   

9.
王德华 《兽类学报》2011,31(1):15-19
本文简要论述了我国哺乳动物生理生态学(主要是啮齿动物)的几个主要领域(方向)的研究进展,如
对环境的适应和瘦素的生理功能。根据国际发展动态,对未来一些可能的发展方向提出了建议。  相似文献   

10.
育肥完成后到冬眠前的阶段被认为是贮脂类冬眠动物从体温常态到冬眠之间的过渡阶段。为研究此阶段瘦素对能量平衡和体温调节的作用,将完成育肥的达乌尔黄鼠随机分成3组,分别在侧脑室植入微渗透泵,持续灌注瘦素(0.5μg/day)、瘦素拮抗剂(0.5μg/day瘦素+5μg/day瘦素拮抗剂)以及人工脑脊液(对照组),为期4周。为了检测瘦素对动物入眠的影响,我们在药物处理最后一周将动物移入低温(5 oC±1oC)、恒黑条件下诱导蛰眠。药物处理过程中测定动物体重、能量摄入、代谢率和体温,药物处理结束后测定身体脂肪重量、褐色脂肪组织中解偶联蛋白1(UCP1)含量以及血清中与能量平衡相关的激素水平。结果发现:育肥后达乌尔黄鼠能量摄入、体重和每日体温自发降低。低温条件下,对照组中50%个体自发进入冬眠状态。瘦素处理和瘦素拮抗剂处理对能量摄入和体重变化没有显著影响。瘦素处理对入眠率没有影响,瘦素拮抗剂处理减少蛰眠表达。瘦素拮抗剂组血清中T4水平高于瘦素处理组。育肥后期瘦素以及瘦素拮抗剂处理对脂肪重量、代谢率以及UCP1含量没有显著影响。结果表明,瘦素对育肥结束后达乌尔黄鼠的冬眠表达具有一定调节作用。  相似文献   

11.
The ability of mammals to maintain a constant body temperature has proven to be a profound evolutionary advantage, allowing members of this class to thrive in most environments on earth. Intriguingly, some mammals employ bouts of deep hypothermia (torpor) to cope with reduced food supply and harsh climates [1, 2]. During torpor, physiological processes such as respiration, cardiac function, and metabolic rate are severely depressed, yet the neural mechanisms that regulate torpor remain unclear [3]. Hypothalamic responses to energy signals, such as leptin, influence the expression of torpor [4-7]. We show that the orphan receptor GPR50 plays an important role in adaptive thermogenesis and torpor. Unlike wild-type mice, Gpr50(-/-) mice readily enter torpor in response to fasting and 2-deoxyglucose administration. Decreased thermogenesis in Gpr50(-/-) mice is not due to a deficit in brown adipose tissue, the principal site of nonshivering thermogenesis in mice [8]. GPR50 is highly expressed in the hypothalamus of several species, including man [9, 10]. In line with this, altered thermoregulation in Gpr50(-/-) mice is associated with attenuated responses to leptin and a suppression of thyrotropin-releasing hormone. Thus, our findings identify hypothalamic circuits involved in torpor and reveal GPR50 to be a novel component of adaptive thermogenesis in mammals.  相似文献   

12.
Mammals that hibernate experience extreme metabolic states and body temperatures as they transition between euthermia, a state resembling typical warm blooded mammals, and prolonged torpor, a state of suspended animation where the brain receives as low as 10% of normal cerebral blood flow. Transitions into and out of torpor are more physiologically challenging than the extreme metabolic suppression and cold body temperatures of torpor per se. Mammals that hibernate show unprecedented capacities to tolerate cerebral ischemia, a decrease in blood flow to the brain caused by stroke, cardiac arrest or brain trauma. While cerebral ischemia often leads to death or disability in humans and most other mammals, hibernating mammals suffer no ill effects when blood flow to the brain is dramatically decreased during torpor or experimentally induced during euthermia. These animals, as adults, also display rapid and pronounced synaptic flexibility where synapses retract during torpor and rapidly re-emerge upon arousal. A variety of coordinated adaptations contribute to tolerance of cerebral ischemia in these animals. In this review we discuss adaptations in heterothermic mammals that may suggest novel therapeutic targets and strategies to protect the human brain against cerebral ischemic damage and neurodegenerative disease.  相似文献   

13.
Endothermic thermoregulation in small, altricial mammals and birds develops at about one third to half of adult size. The small size and consequently high heat loss in these young should result in more pronounced energetic challenges than in adults. Thus, employing torpor (a controlled reduction of metabolic rate and body temperature) during development would allow them to save energy. Although torpor during development in endotherms is likely to occur in many species, it has been documented in only a few. In small, altricial birds (4 orders) and marsupials (1 order), which are poikilothermic at hatching/birth, the development of competent endothermic thermoregulation during cold exposure appears to be concurrent with the capability to display torpor (i.e. poikilothermy is followed by heterothermy), supporting the view that torpor is phylogenetically old and likely plesiomorphic. In contrast, in small, altricial placental mammals (2 orders), poikilothermy at birth is followed first by a homeothermic phase after endothermic thermoregulation is established; the ability to employ torpor develops later (i.e. poikilothermy-homeothermy-heterothermy). This suggests that in placentals torpor is a derived trait that evolved secondarily after a homeothermic phase in certain taxa perhaps as a response to energetic challenges. As mammals and birds arose from different reptilian lineages, endothermy likely evolved separately in the two classes, and given that the developmental sequence of torpor differs between marsupials and placentals, torpor seems to have evolved at least thrice.  相似文献   

14.
Hibernation and daily torpor involve substantial decreases in body temperature and metabolic rate, allowing birds and mammals to cope with cold environments and/or limited food. Regulated suppression of mitochondrial metabolism probably contributes to energy savings: state 3 (phosphorylating) respiration is lower in liver mitochondria isolated from mammals in hibernation or daily torpor compared to normothermic controls, although data on state 4 (non-phosphorylating) respiration are equivocal. However, no suppression is seen in skeletal muscle, and there is little reliable data from other tissues. In both daily torpor and hibernation, liver state 3 substrate oxidation is suppressed, especially upstream of electron transport chain complex IV. In hibernation respiratory suppression is reversed quickly in arousal even when body temperature is very low, implying acute regulatory mechanisms, such as oxaloacetate inhibition of succinate dehydrogenase. Respiratory suppression depends on in vitro assay temperature (no suppression is evident below ~30 degrees C) and (at least in hibernation) dietary polyunsaturated fats, suggesting effects on inner mitochondrial membrane phospholipids. Proton leakiness of the inner mitochondrial membrane does not change in hibernation, but this also depends on dietary polyunsaturates. In contrast proton leak increases in daily torpor, perhaps limiting reactive oxygen species production.  相似文献   

15.
Mammalian torpor saves enormous amounts of energy, but a widely assumed cost of torpor is immobility and therefore vulnerability to predators. Contrary to this assumption, some small marsupial mammals in the wild move while torpid at low body temperatures to basking sites, thereby minimizing energy expenditure during arousal. Hence, we quantified how mammalian locomotor performance is affected by body temperature. The three small marsupial species tested, known to use torpor and basking in the wild, could move while torpid at body temperatures as low as 14.8-17.9°C. Speed was a sigmoid function of body temperature, but body temperature effects on running speed were greater than those in an ectothermic lizard used for comparison. We provide the first quantitative data of movement at low body temperature in mammals, which have survival implications for wild heterothermic mammals, as directional movement at low body temperature permits both basking and predator avoidance.  相似文献   

16.
During times of energetic stress many small mammals reduce their body temperature and metabolic rate, a state known as torpor. Whereas torpor is effective in energy conservation it also entails costs, such as reduced foetal development in pregnant females. Because it is currently not known how subtropical bats deal with energetic challenges during the reproductive season, the thermal biology of free-ranging non-reproductive male and pregnant female Nyctophilus bifax was examined during spring. Males entered torpor much more frequently than pregnant females. However, night time activity periods were similar in both sexes. My results show that even in the subtropics torpor is used regularly during the reproductive period in spring by non-reproductive male N. bifax to conserve energy, but is used rarely by pregnant females likely to prevent slowed foetal development.  相似文献   

17.
A growing number of mammal species are recognized as heterothermic, capable of maintaining a high‐core body temperature or entering a state of metabolic suppression known as torpor. Small mammals can achieve large energetic savings when torpid, but they are also subject to ecological costs. Studying torpor use in an ecological and physiological context can help elucidate relative costs and benefits of torpor to different groups within a population. We measured skin temperatures of 46 adult Rafinesque's big‐eared bats (Corynorhinus rafinesquii) to evaluate thermoregulatory strategies of a heterothermic small mammal during the reproductive season. We compared daily average and minimum skin temperatures as well as the frequency, duration, and depth of torpor bouts of sex and reproductive classes of bats inhabiting day‐roosts with different thermal characteristics. We evaluated roosts with microclimates colder (caves) and warmer (buildings) than ambient air temperatures, as well as roosts with intermediate conditions (trees and rock crevices). Using Akaike's information criterion (AIC), we found that different statistical models best predicted various characteristics of torpor bouts. While the type of day‐roost best predicted the average number of torpor bouts that bats used each day, current weather variables best predicted daily average and minimum skin temperatures of bats, and reproductive condition best predicted average torpor bout depth and the average amount of time spent torpid each day by bats. Finding that different models best explain varying aspects of heterothermy illustrates the importance of torpor to both reproductive and nonreproductive small mammals and emphasizes the multifaceted nature of heterothermy and the need to collect data on numerous heterothermic response variables within an ecophysiological context.  相似文献   

18.
Pulmonary surfactant, a complex mixture of lipids and proteins, lowers the surface tension in terminal air spaces and is crucial for lung function. Within an animal species, surfactant composition can be influenced by development, disease, respiratory rate, and/or body temperature. Here, we analyzed the composition of surfactant in three heterothermic mammals (dunnart, bat, squirrel), displaying different torpor patterns, to determine: 1) whether increases in surfactant cholesterol (Chol) and phospholipid (PL) saturation occur during long-term torpor in squirrels, as in bats and dunnarts; 2) whether surfactant proteins change during torpor; and 3) whether PL molecular species (molsp) composition is altered. In addition, we analyzed the molsp composition of a further nine mammals (including placental/marsupial and hetero-/homeothermic contrasts) to determine whether phylogeny or thermal behavior determines molsp composition in mammals. We discovered that like bats and dunnarts, surfactant Chol increases during torpor in squirrels. However, changes in PL saturation during torpor may not be universal. Torpor was accompanied by a decrease in surfactant protein A in dunnarts and squirrels, but not in bats, whereas surfactant protein B did not change in any species. Phosphatidylcholine (PC)16:0/16:0 is highly variable between mammals and is not the major PL in the wombat, dunnart, shrew, or Tasmanian devil. An inverse relationship exists between PC16:0/16:0 and two of the major fluidizing components, PC16:0/16:1 and PC16:0/14:0. The PL molsp profile of an animal species is not determined by phylogeny or thermal behavior. We conclude that there is no single PL molsp composition that functions optimally in all mammals; rather, surfactant from each animal is unique and tailored to the biology of that animal.  相似文献   

19.
Heterothermic mammals increase the proportion of polyunsaturated fatty acids (PUFA) in their body fats prior to entering torpor. Because PUFA have low melting points, it is thought that they play an important role in maintaining the fluidity of depot fats and membrane phospholipids at low body temperatures. However, PUFA are more prone to autoxidation when exposed to reactive oxygen species (ROS) during torpor and during the periodic arousals that characterize hibernation. A lack of PUFA or an excess of PUFA may constrain the use of torpor by heterothermic mammals. We performed a mixed model meta-analysis of 17 controlled-feeding studies to test the effect of dietary PUFA on the depth and expression of torpor by daily heterotherms and hibernators. We also reviewed the literature on the PUFA content of the diet and depot fats of heterothermic mammals to address two principal topics: (1) Do low dietary levels of PUFA reduce the expression of torpor under laboratory conditions and, if so, are free-ranging animals constrained by a lack of PUFA? (2) Do high dietary levels of PUFA result in a reduction in the use, depth, and duration of torpor and, if so, do free-ranging animals seek to optimize rather than maximize PUFA intake? Low-PUFA diets consistently increase the lower setpoint for body temperature and minimum metabolic rate for both hibernators and daily heterotherms. Above the lower setpoint, low-PUFA diets usually increase body temperature and metabolic rate and decrease the duration of torpor bouts and this effect is similar for hibernators and daily heterotherms. Free-ranging rodent hibernators have dietary PUFA intakes that are far higher than those of the low-PUFA diets offered in controlled-feeding experiments, so these hibernators may never experience the constraints associated with a lack of PUFA. Diets of free-ranging insectivorous bats and echidnas have PUFA levels that are less than half as high as those offered in experimental low-PUFA diets, yet they exhibit deep and extended bouts of torpor. We argue that alternate mechanisms exist for maintaining the fluidity of body fats and that high-PUFA intake may not be a prerequisite for deep and extended bouts of torpor. Four studies indicate that animals that were fed high-PUFA diets are reluctant to enter torpor and show shallower and shorter torpor bouts. Although authors attribute this response to autoxidation, these animals did not have a higher PUFA content in their depot fats than animals where PUFA was shown to enhance torpor. We suggest that these contradictory results indicate inter-specific or inter-individual variation in the ability to control ROS and limit autoxidation of PUFA. High dietary levels of PUFA will constrain the expression of torpor only when the oxidative challenge exceeds the capacity of the antioxidant defence system. Studies of diet selection indicate that insectivorous species with low dietary PUFA levels seek to maximize PUFA intake. However, herbivorous species that have access to plants and plant parts of high-PUFA content do not appear to maximize PUFA intake. These data suggest that animals attempt to optimize rather than maximize PUFA intake. The effect of PUFA should be viewed in the light of a cost-benefit trade-off, where the benefit of high-PUFA intake is an easier access to low body temperatures and the cost is increased risk of autoxidation.  相似文献   

20.
Many birds and mammals drastically reduce their energy expenditure during times of cold exposure, food shortage, or drought, by temporarily abandoning euthermia, i.e. the maintenance of high body temperatures. Traditionally, two different types of heterothermy, i.e. hypometabolic states associated with low body temperature (torpor), have been distinguished: daily torpor, which lasts less than 24 h and is accompanied by continued foraging, versus hibernation, with torpor bouts lasting consecutive days to several weeks in animals that usually do not forage but rely on energy stores, either food caches or body energy reserves. This classification of torpor types has been challenged, suggesting that these phenotypes may merely represent extremes in a continuum of traits. Here, we investigate whether variables of torpor in 214 species (43 birds and 171 mammals) form a continuum or a bimodal distribution. We use Gaussian‐mixture cluster analysis as well as phylogenetically informed regressions to quantitatively assess the distinction between hibernation and daily torpor and to evaluate the impact of body mass and geographical distribution of species on torpor traits. Cluster analysis clearly confirmed the classical distinction between daily torpor and hibernation. Overall, heterothermic endotherms tend to be small; hibernators are significantly heavier than daily heterotherms and also are distributed at higher average latitudes (~35°) than daily heterotherms (~25°). Variables of torpor for an average 30 g heterotherm differed significantly between daily heterotherms and hibernators. Average maximum torpor bout duration was >30‐fold longer, and mean torpor bout duration >25‐fold longer in hibernators. Mean minimum body temperature differed by ~13°C, and the mean minimum torpor metabolic rate was ~35% of the basal metabolic rate (BMR) in daily heterotherms but only 6% of BMR in hibernators. Consequently, our analysis strongly supports the view that hibernators and daily heterotherms are functionally distinct groups that probably have been subject to disruptive selection. Arguably, the primary physiological difference between daily torpor and hibernation, which leads to a variety of derived further distinct characteristics, is the temporal control of entry into and arousal from torpor, which is governed by the circadian clock in daily heterotherms, but apparently not in hibernators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号