首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
How stereoselective monolignol-derived phenoxy radical-radical coupling reactions are differentially biochemically orchestrated in planta, whereby for example they afford (+)- and (−)-pinoresinols, respectively, is both a fascinating mechanistic and evolutionary question. In earlier work, biochemical control of (+)-pinoresinol formation had been established to be engendered by a (+)-pinoresinol-forming dirigent protein in Forsythia intermedia, whereas the presence of a (−)-pinoresinol-forming dirigent protein was indirectly deduced based on the enantiospecificity of downstream pinoresinol reductases (AtPrRs) in Arabidopsis thaliana root tissue. In this study of 16 putative dirigent protein homologs in Arabidopsis, AtDIR6, AtDIR10, and AtDIR13 were established to be root-specific using a β-glucuronidase reporter gene strategy. Of these three, in vitro analyses established that only recombinant AtDIR6 was a (−)-pinoresinol-forming dirigent protein, whose physiological role was further confirmed using overexpression and RNAi strategies in vivo. Interestingly, its closest homolog, AtDIR5, was also established to be a (−)-pinoresinol-forming dirigent protein based on in vitro biochemical analyses. Both of these were compared in terms of properties with a (+)-pinoresinol-forming dirigent protein from Schizandra chinensis. In this context, sequence analyses, site-directed mutagenesis, and region swapping resulted in identification of putative substrate binding sites/regions and candidate residues controlling distinct stereoselectivities of coupling modes.  相似文献   

2.
The solution form of IIA(Ntr) from Escherichia coli and its interaction with its partner protein, NPr, were characterized by nuclear magnetic resonance (NMR) spectroscopy. The diffusion coefficient of the protein (1.13 x 10(-6) cm/sec) falls between that of HPr (approximately 9 kDa) and the N-terminal domain of E. coli enzyme I (approximately 30 kDa), indicating that the functional form of IIA(Ntr) is a monomer (approximately 18 kDa) in solution. Thus, the dimeric structure of the protein found in the crystal is an artifact of crystal packing. The residual dipolar coupling data of IIA(Ntr) (covering residues 11-155) measured in the absence and presence of a 4% polyethyleneglycol-hexanol liquid crystal alignment medium fit well to the coordinates of both molecule A and molecule B of the dimeric crystal structure, indicating that the 3D structures in solution and in the crystal are indeed similar for that protein region. However, only molecule A possesses an N-terminal helix identical to that derived from chemical shifts of IIA(Ntr) in solution. Further, the (15)N heteronuclear nuclear Overhauser effect (NOE) data also support molecule A as the representative structure in solution, with the terminal residues 1-8 and 158-163 more mobile. Chemical shift mapping identified the surface on IIA(Ntr) for NPr binding. Residues Gly61, Asp115, Ser125, Thr156, and nearby regions of IIA(Ntr) are more perturbed and participate in interaction with NPr. The active-site His73 of IIA(Ntr) for phosphoryl transfer was found in the Ndelta1-H tautomeric state. This work lays the foundation for future structure and function studies of the signal transducing proteins from this nitrogen pathway.  相似文献   

3.
Given the importance of the antitumor/antiviral lignans, podophyllotoxin and 5-methoxypodophyllotoxin, as biotechnological targets, their biosynthetic pathways were investigated in Podophyllum peltatum and Linum flavum. Entry into their pathways was established to occur via dirigent mediated coupling of E-coniferyl alcohol to afford (+)-pinoresinol; the encoding gene was cloned and the recombinant protein subsequently obtained. Radiolabeled substrate studies using partially purified enzyme preparations next revealed (+)-pinoresinol was enantiospecifically converted sequentially into (+)-lariciresinol and (-)-secoisolariciresinol via the action of an NADPH-dependent bifunctional pinoresinol/lariciresinol reductase. The resulting (-)-secoisolariciresinol was enantiospecifically dehydrogenated into (-)-matairesinol, as evidenced through the conversion of both radio- and stable isotopically labeled secoisolariciresinol into matairesinol, this being catalyzed by the NAD-dependent secoisolariciresinol dehydrogenase. (-)-Matairesinol was further hydroxylated to afford 7'-hydroxymatairesinol, this being efficiently metabolized into 5-methoxypodophyllotoxin. Thus much of the overall biosynthetic pathway to podophyllotoxin has been established, that is, from the dirigent mediated coupling of E-coniferyl alcohol to the subsequent conversions leading to 7'-hydroxymatairesinol.  相似文献   

4.
Phenoxy radical coupling reactions are involved in the biosynthesis of lignans in planta. Interestingly, the reaction can be guided by dirigent proteins, which mediate the stereoselective formation of either (+) or (?)-pinoresinol from coniferyl alcohol. So far, the mechanism is poorly understood, and for detailed mechanistic studies, a heterologous expression platform which allows the cost-effective, fast, and robust expression in high yields is needed. We established a reliable, high-yield fed-batch fermentation process with Pichia pastoris resulting in 47 mg?L?1 of the dirigent protein AtDIR6, which represents a more than 250-fold increase compared to previous studies. Biochemical characterization of AtDIR6 produced with P. pastoris showed an overall agreement in protein structure, N-glycosylation sites, and dirigent activity compared to AtDIR6 produced by plant cell cultures of Solanum peruvianum. CD spectroscopy verified the β-barrel structure proposed by earlier studies and bioconversion experiments revealed similar activities to plant-derived protein, validating P. pastoris as a suitable expression system for dirigent proteins. Compared to the complex glycan structures of most plant cells, proteins produced with P. pastoris have the advantage that they can be enzymatically deglycosylated under non-denaturating conditions. With this study, we demonstrate that the glycan structures of AtDIR6 are essential for structure, solubility, and function of the protein as deglycosylation induced conformational changes leading to the complete loss in dirigent activity and subsequent protein aggregation.  相似文献   

5.
Solution studies of the cytoplasmic domain (molecular mass approximately 40kDa) of band 3, the anion exchanger from human erythrocyte membranes, previously suggested a dimeric molecule on the basis of the relative techniques of calibrated gel filtration and calibrated preparative ultracentrifugation. This dimeric behavior is firmly established on an absolute basis by a combination of calibrated gel chromatography and absolute ultracentrifugation techniques. Sedimentation velocity in the analytical ultracentrifuge combined with calibrated gel chromatography give a molecular mass M of (77 +/- 4) kDa, a value confirmed by low-speed sedimentation equilibrium. Velocity sedimentation in the analytical ultracentrifuge gave a single sedimenting species with an s o 20,w of (3.74 +/- 0.07)S. Sedimentation equilibrium analysis was also used to establish the strength of the binding via the dissociation constant Kd, with a value from direct fitting of the concentration distribution curves of (2.8 +/- 0.5) microM, confirmed by a value of approximately 3 microM obtained from fitting a plot of molecular weight Mw,app versus cell loading concentration. Hydrodynamic calculations based on the classical translational frictional ratio showed that the protein was highly asymmetric, with an axial ratio of approximately 10:1, consistent with observations from electron microscopy.  相似文献   

6.
This review describes discoveries from this laboratory on monolignol, allylphenol and hydroxycinnamic acid coupling, and downstream metabolic conversions, affording various lignan skeleta. Stereoselective 8-8′ coupling (dirigent protein-mediated) of coniferyl alcohol to afford (+)-pinoresinol is comprehensively discussed, as is our current mechanistic/kinetic understanding of the protein’s radical-radical binding, orientation and coupling properties, and insights gained for other coupling modes, e.g. affording (−)-pinoresinol. In a species dependent manner, (+)- or (−)-pinoresinols can also undergo enantiospecific reductions, catalyzed by various bifunctional pinoresinol-lariciresinol reductases (PLR), to afford lariciresinol and then secoisolariciresinol. With X-ray structures giving a molecular basis for differing PLR enantiospecificities, comparisons are made herein to the X-ray structure of the related enzyme, phenylcoumaran benzylic ether reductase, capable of 8-5′ linked lignan regiospecific reductions. Properties of the enantiospecific secoisolariciresinol dehydrogenase (also discovered in our laboratory and generating 8-8′ linked matairesinol) are summarized, as are both in situ hybridization and immunolocalization of lignan pathway mRNA/proteins in vascular tissues. This entire 8-8′ pathway thus overall affords secoisolariciresinol and matairesinol, viewed as cancer preventative agent precursors, as well as intermediates to cancer treating substances, such as podophyllotoxin derivatives. Another emphasis is placed on allylphenol/hydroxycinnamic acid coupling and associated downstream metabolism, e.g. affording the antiviral creosote bush lignan, nordihydroguaiaretic acid (NDGA), and the fern lignans, blechnic/brainic acids. Regiospecific 8-8′ allylphenol coupling is described, as is characterization of the first enantiospecific membrane-bound polyphenol oxidase, (+)-larreatricin hydroxylase, involved in NDGA formation. Specific [13C]-labeling also indicated that Blechnum lignans arise from stereoselective 8-2′ hydroxycinnamic acid coupling. Abbreviations: CD – circular dichroism; e.e. – enantiomeric excess; DP – dirigent protein; ESI-MS – electrospray ionization mass spectrometry; MALDI -TOF – matrix assisted laser desorption ionization-time of flight; MALLS – multiangle laser light scattering; PLR – pinoresinol lariciresinol reductase; SDH – secoisolariciresinol dehydrogenase. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
Halls SC  Davin LB  Kramer DM  Lewis NG 《Biochemistry》2004,43(9):2587-2595
An essential step in lignan and lignin formation in planta is one electron oxidation of (E)-coniferyl alcohol (CA) to generate the radical intermediate (CA(*)), which can then undergo directed radical-radical couplings in vivo. For lignan formation in vitro and in vivo, stereoselective coupling of CA(*) only occurs to afford (+)-pinoresinol in the additional presence of (+)-pinoresinol forming dirigent protein (DP). Presented herein is a kinetic and thermodynamic study which reveals the central mechanistic details of the coupling process involved in DP-mediated coupling. DP activity was maximal between pH 4.25 and pH 6.0, with activity being maintained at temperatures below 33 degrees C. Equilibrium binding assays revealed that coniferyl alcohol was only weakly bound to the DP, with a K(D) of 370 +/- 65 microM. On the other hand, the enantiomeric excess of (+)-pinoresinol formed was dependent on both DP concentration and rate of CA oxidation and, thus, on apparent steady-state [CA(*)]. The data obtained could best be explained using a kinetic model where radical-radical coupling via DP competes with that occurring in open solution. Using this model, an apparent K(M) of about 10 nM was estimated from the saturation behavior of (+)-pinoresinol formation with respect to apparent steady-state [CA(*)]. These data strongly suggest that CA(*), rather than CA, is the substrate for DP, in agreement with earlier predictions. A mechanism of directed radical-radical coupling, where two coniferyl alcohol radical substrates are bound per protein dimer, is proposed.  相似文献   

8.
The human homologue of the Drosophila discs large tumor suppressor protein (hDlg), a member of the membrane-associated guanylate kinase (MAGUK) superfamily, interacts with K(+) channels, N-methyl-d-aspartate receptors, calcium ATPase, adenomatous polyposis coli, and PTEN tumor suppressor proteins, and several viral oncoproteins through its PDZ domains. MAGUKs play pivotal roles in the clustering and aggregation of receptors, ion channels, and cell adhesion molecules at the synapses. To investigate the physiological basis of hDlg interactions, we examined the self-association state of full-length hDlg as well as defined segments of hDlg expressed as recombinant proteins in bacteria and insect Sf9 cells. Gel permeation chromatography of full-length hDlg revealed that the purified protein migrates as a large particle of size >440 kDa. Similar measurements of defined domains of hDlg indicated that the anomalous mobility of hDlg originated from its amino-terminal domain. Ultrastructural analysis of hDlg by low angle rotary shadow electron microscopy revealed that the full-length hDlg protein as well as its amino-terminal domain exhibits a highly flexible irregular shape. Further evaluation of the self-association state of hDlg using sedimentation equilibrium centrifugation, matrix-assisted laser desorption/ionization mass spectrometry, and chemical cross-linking techniques confirmed that the oligomerization site of hDlg is contained within its amino-terminal domain. This unique amino-terminal domain mediates multimerization of hDlg into dimeric and tetrameric species in solution. Sedimentation velocity experiments demonstrated that the oligomerization domain exists as an elongated tetramer in solution. In vitro mutagenesis was used to demonstrate that a single cysteine residue present in the oligomerization domain of hDlg is not required for its self-association. Understanding the oligomerization status of hDlg may help to explicate the mechanism of hDlg association with multimeric K(+) channels and dimeric adenomatous polyposis coli tumor suppressor protein. Our findings, therefore, begin to rationalize the role of hDlg in the clustering of membrane channels and formation of multiprotein complexes necessary for signaling and cell proliferation pathways.  相似文献   

9.
Crude and highly purified SV40 large T antigen has been found to exist in forms of various sizes Immunoreactive structures of 5.5S (80-85 kd), 7S (or approximately 150 kd) and 15.5S (325-340 kd) have been identified by zonal sedimentation and gel filtration. They appear to correspond to monomeric, dimeric and tetrameric species of T, respectively, and are free of detectable 55 kd NVT by specific immunoprecipitation analyses. While highly purified monomer appears relatively inactive in SV40 DNA-binding and ATPase assays, both the dimer and tetramer display these activities. By contrast, all three comigrate with casein kinase activity. These data suggest that the protein can exist as a monomer and in various homoaggregated forms. In addition, it appears that it must aggregate to be an active DNA-binding element and an ATPase.  相似文献   

10.
Molecular mechanisms involved in sperm motility initiation in two sparids (Sparus aurata and Lithognathus mormyrus) have been studied. Our comparative study demonstrates that osmolality is the key signal in sperm motility activation in both species, whereas K(+) and Ca(2+) do not have any role. The straight-line velocity that resulted, however, was significantly different when measured in sperm activated with non-ionic and/or calcium-free solutions with respect to that measured in seawater-activated sperm. In both species, motility initiation depends on cAMP-dependent protein phosphorylation. The phosphorylation/dephosphorylation patterns that resulted in gilthead and striped sea bream were quite different. In gilthead sea bream, the phosphorylated proteins have molecular weights of 174, 147, 138, 70, and 9-15 kDa, whereas the dephosphorylated proteins have molecular weights of 76, 57, and 33 kDa. In striped sea bream, phosphorylation after sperm motility activation occurred on proteins of 174, 147, 103, 96, 61, 57, and 28 kDa, whereas only one protein of 70 kDa resulted from dephosphorylation. Matrix-assisted laser desorption ionization-time of flight analyses allowed identification of the following proteins: In gilthead sea bream, the 9-15 kDa proteins that were phosphorylated after motility activation include an A-kinase anchor protein (AKAP), an acetyl-coenzyme A synthetase, and a protein phosphatase inhibitor, and in striped sea bream, 103- and 61-kDa proteins that were phosphorylated after motility activation were identified as a phosphatase (myotubularin-related protein 1) and a kinase (DYRK3), respectively.  相似文献   

11.
The macromolecular self-association of ADP-ribosyltransferase protein in solution was studied by several experimental techniques: quantitative gel filtration, electrophoretic analyses in non-denaturing gels, and cross-linking the enzyme protein with glutaraldehyde, dimethyl pimelimidate, dimethyl suberimidate, dimethyl 3,3'-dithiobisproprionimidate and tetranitromethane. The self-association of the polypeptide components obtained by plasmin digestion was also determined by using the above cross-linking agents. Monomers and cross-linked dimers of the enzyme protein, possessing enzymic activity, were separated in non-denaturing gels by electrophoresis. The basic polypeptide fragments, exhibiting molecular masses of 29 kDa and 36 kDa, self-associated, whereas the polypeptides with molecular masses of 56 kDa and 42 kDa associated only to a negligible extent, indicating that the peptide regions that also bind DNA and histones are probable sites of self-association in the intact enzyme molecule. Macromolecular association of the enzyme was indicated by a protein-concentration-dependent red-shift in protein fluorescence. The specific enzymic activity of the isolated ADP-ribosyltransferase depended on the concentration of the enzyme protein, and at 2.00 microM concentration the enzyme was self-inhibitory. Dilution of the enzyme protein to 30-40 nM resulted in a large increase in its specific activity. Further dilution to 1-3 nM coincided with a marked decrease of specific activity. Direct enzymic assays of electrophoretically separated monomers and cross-linked dimers demonstrated that the dimer appears to be the active molecular species that catalyses poly(ADP-ribose) synthesis. The NAD+ glycohydrolase activity of the enzyme was also dependent on protein concentration and was highest at 1-3 nM enzyme concentration, when polymerase activity was minimal, indicating that the monomeric enzyme behaved as a glycohydrolase, whereas poly(ADP-ribosyl)ation of enzyme molecules was maximal when the enzyme tends to be self-associated to the dimeric form.  相似文献   

12.
Hydrodynamic, chromatographic, and spectroscopic techniques were used to study the aqueous solution properties of the two structural domains of human apolipoprotein (apo) E3. An amino-terminal thrombolytic fragment of apoE (22 kDa, residues 1-191) and a carboxyl-terminal thrombolytic fragment of apoE (10 kDa, residues 216-299) were used as models for the two domains. Sedimentation equilibrium ultracentrifugation showed that apoE and the 10-kDa model domain self-associated predominantly as tetramers. The 22-kDa model domain was primarily monomeric. Molecular weights calculated from the weight average sedimentation and diffusion coefficients or from the sedimentation coefficients and Stokes radii were in agreement with the sedimentation equilibrium results. Derived frictional coefficients suggest larger axial ratios and/or more extensive hydration for the apoE and the 10-kDa domain tetramers as compared with the 22-kDa domain. Proteolysis of apoE followed by high performance liquid chromatography showed rapid production of free 22-kDa domain, whereas the free 10-kDa domain appeared as a tetramer late in the course of the hydrolysis. Assessment by circular dichroism demonstrated that both model domains and apoE had over 54% alpha-helical content, which changed little in a detergent (octyl-beta-D-glucopyranoside) or lipid (dimyristoylphosphatidylcholine) environment. In contrast to the circular dichroism results, apoE and the 10-kDa domain showed a marked blue shift in the fluorescence maximum in a lipid environment. The results suggest that the self-association of apoE in solution as a tetramer is mediated by the carboxyl-terminal domain and that the amino- and carboxyl-terminal domains do not associate with one another. The amino-terminal domain is most likely compact and globular, whereas the carboxyl-terminal domain is probably elongated. The isolated model domains appear to have structures that are similar to those of the domains in the intact protein.  相似文献   

13.
To protect their genetic material cells adopt different mechanisms linked to DNA replication, recombination and repair. Several proteins function at the interface of these DNA transactions. In the present study, we report on the identification of a novel archaeal DNA helicase. BlastP searches of the Sulfolobus solfataricus genome database allowed us to identify an open reading frame (SSO0112, 875 amino acid residues) having sequence similarity with the human RecQ5beta. The corresponding protein, termed Hel112 by us, was produced in Escherichia coli in soluble form, purified to homogeneity and characterized. Gel-filtration chromatography and glycerol-gradient sedimentation analyses revealed that Hel112 forms monomers and dimers in solution. Biochemical characterization of the two oligomeric species revealed that only the monomeric form has an ATP-dependent 3'-5' DNA-helicase activity, whereas, unexpectedly, both the monomeric and dimeric forms possess DNA strand-annealing capability. The Hel112 monomeric form is able to unwind forked and 3'-tailed DNA structures with high efficiency, whereas it is almost inactive on blunt-ended duplexes and bubble-containing molecules. This analysis reveals that S. solfataricus Hel112 shares some enzymatic features with the RecQ-like DNA helicases and suggests potential cellular functions of this protein.  相似文献   

14.
Both cytosolic and high salt nuclear extracts were isolated from Hepa 1c1c7 cells incubated with 2-azido-3[125I]iodo-7,8-dibromo-dibenzo-p-dioxin ([125I]N3Br2DpD). The [125I]N3Br2DpD-labeled cytosolic fraction was subjected to chemical cross-linking with dimethyl pimelimidate and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Chemical cross-linking of the cytosolic form of the AhR revealed monomeric (97 kDa), dimeric (185 kDa), trimeric (281 kDa), and tetrameric (327 kDa) complexes. In a time course of exposure to the cross-linking reagent, the largest form given above became the predominant AhR form observed in the cytosolic extracts. The 327 kDa cytosolic species apparently consists of a 97 kDa AhR, an approximately 88 kDa protein, an approximately 96 kDa protein, and an approximately 46 kDa protein. Nuclear extracts from [125I]N3Br2DpD-labeled Hepa 1c1c7 cells were applied to sucrose density gradients. The 6 S nuclear receptor peak fractions were pooled and subjected to chemical cross-linking. Analysis by SDS-PAGE revealed a monomeric (97 kDa) ligand binding protein and a dimeric (182 kDa) complex. This would suggest that the nuclear 6 S AhR consists of a 97 kDa AhR and an approximately 85 kDa protein. These findings would indicate that the AhR exists in cytosol as a tetrameric species, while in the nucleus the AhR exists as a heterodimer.  相似文献   

15.
NADP(+)-dependent isocitrate dehydrogenase is a member of the beta-decarboxylating dehydrogenase family and catalyzes the oxidative decarboxylation reaction from 2R,3S-isocitrate to yield 2-oxoglutarate and CO(2) in the Krebs cycle. Although most prokaryotic NADP(+)-dependent isocitrate dehydrogenases (IDHs) are homodimeric enzymes, the monomeric IDH with a molecular weight of 80-100 kDa has been found in a few species of bacteria. The 1.95 A crystal structure of the monomeric IDH revealed that it consists of two distinct domains, and its folding topology is related to the dimeric IDH. The structure of the large domain repeats a motif observed in the dimeric IDH. Such a fusional structure by domain duplication enables a single polypeptide chain to form a structure at the catalytic site that is homologous to the dimeric IDH, the catalytic site of which is located at the interface of two identical subunits.  相似文献   

16.
Glial cell line-derived neurotrophic factor (GDNF) is a member of the TGF-beta superfamily of proteins. It exists as a covalent dimer in solution, with the 15 kDa monomers linked by an interchain disulfide bond through the Cys101 residues. Sedimentation equilibrium and velocity experiments demonstrated that, after removal of the interchain disulfide bond, GDNF remains as a non-covalent dimer and is stable at pH 7.0. To investigate the effect of the intermolecular disulfide on the structure and stability of GDNF, we compared the solution structures of the wild-type protein and a cysteine-101 to alanine (C101A) mutant using Fourier transform infrared (FTIR), FT-Raman and circular dichroism (CD) spectroscopy and sedimentation analysis. The elimination of the intermolecular disulfide bond causes only minor changes (approximately 4%) in the secondary structures of GDNF. The far- and near-UV CD spectra demonstrated that the secondary and tertiary structures were similar for both wild-type and C101A GDNF. Heparin binding and sedimentation velocity experiments also indicated that the folded structure of the wild-type and C101A GDNF are indistinguishable. The thermal stability of GDNF does not appear to be affected by the absence of the interchain disulfide bond and the biological activity of the C101A mutant is identical with that of the wild-type protein. However, small but significant changes in side chain conformations of tyrosine and aliphatic residues were observed by FT-Raman spectroscopy upon removal of the intermolecular disulfide bond, which may reflect structural changes in the area of dimeric contact. By comparing the Raman spectrum of wild-type GDNF with that of the C101A analog, we identified the conformation of the intermolecular disulfide as trans-gauche-trans geometry. These results indicate that GDNF is an active, properly folded molecule in the absence of the interchain disulfide bond.  相似文献   

17.
Rhodopsin (Rho) has been extracted in n-dodecyl beta-D-maltoside (DM) from bovine retinal rod outer segments and purified to homogeneity by affinity chromatography on concanavalin A-Sepharose. Because chemical cross-linking of Rho and photoactivated Rho (Rho*) provided initial evidence for the oligomeric nature of the photoreceptor protein, we carried out a hydrodynamic characterization of the native and activated conformations of detergent-solubilized Rho. The molecular weights of the complexes between dark and photoexcited states of Rho and DM were determined by gel filtration chromatography on Sephacryl S-300, in the presence of 0.1% DM. Subtracting the size of the corresponding detergent micelles resulted in molecular masses of 78 kDa for native Rho and 76 kDa for Rho*. The measured content of 0.97 g of detergent/g of protein resulted in a calculated partial specific volume of 0.765 cm(3)/g for the protein-detergent complex and a molar mass of 64-65 kDa for the protein moiety. The sizes of Rho.DM and Rho*.DM complexes were also evaluated by sedimentation on 10-30% sucrose gradients, in the presence of 0.1% DM, and molecular masses of about 60 kDa were estimated for both the dark- and light-activated states of the photoreceptor protein. The size of Rho was determined to be 65,300 and 69,800 Da, respectively, when the purified Rho.DM complex was either chromatographed on Sephacryl S-300 or ultracentrifuged on sucrose gradients in the absence of DM. All these results were consistent with a dimeric quaternary structure for both conformations of Rho. Additionally, the functional integrity of the purified photoreceptor protein following gel filtration chromatography and ultracentrifugation was demonstrated by three criteria as follows: (i) its characteristic UV-visible absorption spectra, (ii) its capability to photoactivate transducin, and (iii) its ability to serve as a substrate for rhodopsin kinase.  相似文献   

18.
Juma BF  Majinda RR 《Phytochemistry》2004,65(10):1397-1404
Fourteen different erythrinaline alkaloids have been isolated from the flowers and pods of Erythrina lysistemon with four being reported for the first time in nature and five for the first time in this species and the rest having been re-isolated. The new compounds are (+)-11beta-hydroxyerysotramidine (1), (+)-11beta-methoxyerysotramidine (2), (+)-11beta-hydroxyerysotrine N-oxide (4) and (+)-11beta-hydroxyerysotrine (8). (+)-11alpha-Hydroxyerysotrine N-oxide (3), earlier misidentified as erythrartine N-oxide (beta-hydroxyerysotrine N-oxide 4), was also re-isolated along with four other alkaloids. Correct identification of compounds 4 and 8 was aided by the fact that the two sets of C-11 epimers 3, 4 and 8, 9 were both isolated in this study thus making it easier to identify and assign the individual epimers. (+)-Erythristemine (14) was found distributed in most of the plant parts investigated. Preliminary work on the crude chloroform/methanol (1:1) showed moderate toxicity to brine shrimp (LC50 23 ppm) and moderate (IC50 86 microg/ml) radical scavenging properties against stable 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical. The DPPH radical scavenging properties of the isolated compounds were assessed using TLC autographic and spectrophotometric assays whereupon only compounds 11 (1 microg; 90 microg/ml) and 12 (0.1 microg; 160 microg/ml) showed any notable activity. It appears the two compounds are slow reacting and do not reach steady state conditions within the standard half an hour time frame but only seemed to have reached steady state conditions after 4 h.  相似文献   

19.
SSL, the lectin isolated from Salvia sclarea seeds, recognizes the Tn antigen (GalNAcalpha-O-Ser/Thr), a specific marker of many human carcinomas. Two-dimensional electrophoresis, amino-acid and amino-sugar analysis, and MALDI-TOF MS showed that SSL is an acidic (pI 5.5), 60-61-kDa dimeric glycoprotein composed of apparently identical subunits linked by a single disulfide bond. The apparent molecular mass of SSL in solution determined by equilibrium sedimentation analytical ultracentrifugation was 59 +/- 9 kDa. This value did not change in the pH range 2.5-8.5, indicating that SSL does not associate into higher order structures. Tandem mass spectrometry and methylation analysis of N-glycans released from SSL by hydrazinolysis indicated that SSL possesses 2-3 glycosylation sites occupied with the typical plant glycans Manalpha1-6[(Manalpha1-3)(Xylbeta1-2)]Manbeta1-4 -GlcNAcbeta1-4(Fucalp ha1-3)GlcNAc and [(Manalpha1-3/6)(Xylbeta1-2)]Manbeta1-4-GlcNAcbeta1 -4(Fucalpha1-3)Glc NAc. The influence of adjacent Tn structures on the binding of two Tn-specific lectins (SSL and the isolectin B4 from Vicia villosa) and an anti-Tn monoclonal antibody (mAb 83D4) was evaluated using synthetic Tn glycopeptides. The binding of both lectins to the synthetic Tn glycopeptides was independent of the density of Tn structures. On the other hand, mAb 83D4 only reacted with glycopeptides displaying two or three consecutive Tn structures.  相似文献   

20.
Lysosomal neuraminidase (sialidase; EC 3.2.1.18) and beta-galactosidase (EC 3.2.1.23), together with a carboxypeptidase, the so-called 'protective protein', were co-purified from the human placenta by affinity chromatography on a concanavalin A-Sepharose column followed by a thiogalactoside-agarose affinity column for beta-galactosidase. Analysis of the purified material by gel-filtration h.p.l.c. revealed three distinct molecular forms, all with high beta-galactosidase specific activity, but only the largest one expressed neuraminidase activity. Rechromatography of each individual species separately indicated that all three are in fact part of an equilibrium system (the neuraminidase-beta-galactosidase-carboxypeptidase complex or NGC-complex) and that these species undergo slow conversion into one another through dissociation and association of protomeric components. Each species was sufficiently stable for the determination of their hydrodynamic properties by gel-filtration h.p.l.c. and sedimentation velocity. The largest species had an apparent sedimentation coefficient S20.w, of 18.8 S and a Stokes' radius of 8.5 nm, giving a molecular mass of 679 kDa and a fractional ratio, f/f min, of 1.47. The latter value indicates that the macromolecule is asymmetric or highly hydrated. This large species is composed of four types of polypeptide chains of molecular mass 66 kDa (neuraminidase), 63 kDa (beta-galactosidase), 32 kDa and 20 kDa (carboxypeptidase heterodimer). The 32 kDa and 20 kDa protomers are linked together by a disulphide bridge. Glycopeptidase F digestion of the NGC-complex transformed the diffuse 66-63 kDa band on the SDS gel into two close but sharp bands at 58 and 56 kDa. The two smaller species which were separated on the h.p.l.c. column correspond to tetrameric and dimeric forms of the 66-63 kDa protomers and express exclusively beta-galactosidase activity. Treatment of the NGC-complex with increasing concentrations of guanidinium hydrochloride up to 1.5 M also resulted in dissociation of the complex into the same smaller species mentioned above plus two protomers of molecular mass around 60 and 50 kDa. A model of the largest molecular species as a hexamer of the 66-63 kDa protomers associated to five carboxypeptidase heterodimers (32 kDa and 20 kDa) is proposed  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号