首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The gibberellin (GA) content of the reproductive organs ofCitrus sinensis (L.) Osb., cv. Bianca Comuna and the seedless variety, Salustiana, were examined by combined gas chromatography-mass spectrometry (GC/MS) at different stages of development. Gibberellins A1, A20, and A29 were identified in the reproductive buds of both cultivars 21 days prior to anthesis and in fruits 35 days after anthesis by comparison of their mass spectra and Kovats retention indices with those of standards. In addition, three uncharacterized isomers of GA1 were detected, one in buds and two in fruits. The presence of GA4 in both tissues, and of GA8 in the reproductive buds, was indicated by the occurrence of characteristic ions at the expected retention times, although their spectra were too weak for full identification. Vegetative shoots of cv. Salustiana contained gibberellins A1, A19, A20, and A29, and the unidentified isomer of GA1 present in reproductive buds. The presence of trace amounts of gibberellins A8 and A17 was also indicated. Although the two varieties did not differ qualitatively in the GAs present during flower and fruit development, the seedless variety contained slightly greater amounts. The concentrations of gibberellins A1, A4, and A20 were determined by gas chromatography-selected ion monitoring (GC/SIM) throughout ovary development and early fruit growth. In both varieties, the maximum GA1 concentration occurred at anthesis. Highest concentrations of gibberellins A20 and A4 were found in fruit 35 days after anthesis, although the GA1 concentration at this stage remained low.  相似文献   

2.
Satsuma [Citrus unshiu (Mak) Marc.] and Clementine [Citrus reticulata (Hort.) Ex. Tanaka, cv. Oroval] are two related species of seedless mandarins which differ in their tendency to set parthenocarpic fruits. Satsuma fruits naturally set parthenocarpically whereas Clementine mandarins show very low ability to set fruit in the absence of cross-pollination. The endogenous levels of gibberellins (GAs) and free and conjugated indole-acetic acid (IAA) and abscisic acid (ABA) throughout early stages of fruit development were investigated in seedless cultivars of both species. Analyses performed by full-scan combined gas chromatography-mass spectrometry (GC-MS) of extracts from ovaries at anthesis demonstrated the presence of GA19, GA20, GA29, GA1, GA8, GA3 and iso-GA3 in Satsuma mandarin, whereas only GA29, GA3 and trace levels of GA8 were detected in Clementine. At this developmental stage GA-like substances, as estimated by bioassay, reached their highest levels in Satsuma, while Clementine mandarins contained relatively lower levels. In both species the highest levels of free IAA were found at petal-fall stage at which time free ABA levels also peaked. Developing fruits of Clementine had higher amounts of both free IAA and ABA. In Satsuma, levels of conjugated IAA remained low throughout reproductive development whereas in Clementine they increased as the free form declined. In contrast, conjugated ABA was at low levels in Clementine but reached higher concentrations in Satsuma. These results suggest that in these mandarins the potential for setting parthenocarpic fruits is mainly influenced by the hormonal status of the fruit during the later stages of cell division and early stages of cell enlargement. Thus, the condition of low ability to set parthenocarpic fruits appears to be associated with lower levels of active GAs, lower capability to catabolize ABA to conjugated ABA and higher ability to conjugate IAA during this period.  相似文献   

3.
Satsuma (Citrus unshiu [Mak] Marc.) and Clementine (Citrus reticulata [Hort.] Ex. Tanaka, cv Oroval) are two species of seedless mandarins differing in their tendency to develop parthenocarpic fruits. Satsuma is a male-sterile cultivar that shows a high degree of natural parthenocarpy and a high fruit set. Seedless Clementine varieties are self-incompatible, and in the absence of cross-pollination show a very low ability to set fruit. The gibberellins (GAs) GA53, putative 17-OH-GA53, GA44, GA17, GA19, GA20, GA29, GA1, 3-epi-GA1, GA8, GA24, GA9, and GA4 have been identified from developing fruits of both species by full-scan combined gas chromatography-mass spectrometry. Using selected ion monitoring with [2H2]- and [13C]-labeled internal standards, the levels of GA53, GA44, GA19, GA20, GA1, GA8, GA4, and GA9 were determined in developing ovaries at anthesis and 7 days before and after anthesis, from both species. Except for GA8, levels of the 13-hydroxy-GAs were higher in Satsuma than in Clementine, and these differences were more prominent for developing young fruits. At petal fall, Satsuma had, on a nanograms per gram dry weight basis, higher levels of GA53 (10.4x), GA44 (13.9x), GA19 (3.0x), GA20 (11.2x), and GA1 (2.0x). By contrast, levels of GA8 were always higher in Clementine, whereas levels of GA4 did not differ greatly. Levels of GA9 were very low in both species. At petal fall, fruitlets of Satsuma and Clementine contained 65 and 13 picograms of GA1, respectively. At this time, the application of 25 micrograms of paclobutrazol to fruits increased fruit abscission in both varieties. This effect was reversed by the simultaneous applications of 1 microgram of GA3. GA3 alone improved the set in Clementine (13x), but had little influence on Satsuma. Thus, seedless fruits of the self-incompatible Clementine mandarin may not have adequate GA levels for fruit set. Collectively, these results suggest that endogenous GA content in developing ovaries is the limiting factor controlling the parthenocarpic development of the fruits.  相似文献   

4.
The effect of 100 mgl–1 gibberellic acid (GA3) on flowering and fruit ripening synchrony, fruit set, fruit fresh weight, and vegetative growth were studied for different size classes of coffee (Coffea arabica L. cv. Guatemalan) flower buds. Flower buds that were > 4 mm, but not developed to the candle stage at the time of GA3 treatment, reached anthesis 20 days earlier than the controls, and their development was independent of precipitation, unlike the controls. Fruit from buds that were treated with GA3 at the candle stage showed earlier and more synchronous ripening than the control, although no differences in flowering were found during anthesis. Buds that were smaller than 4 mm at the time of treatment did not respond to GA3 applications. Treatment with GA3 did not affect fruit set, fresh weight of fruits, or vegetative shoot growth.  相似文献   

5.
Gibberellins A1 and A3 are the major physiologically active gibberellins (GAs) present in young fruit of pea (Pisum sativum L.). The relative importance of these GAs in controlling fruit growth and their biosynthetic origins were investigated in cv. Alaska. In addition, the non-13-hydroxylated active GAs, GA4 and GA7, were identified for the first time in young seeds harvested 4 d after anthesis, although they are minor components and are not expected to play major physiological roles. The GA1 content is maximal in seeds and pods at 6 d after anthesis, the time of highest growth-rate of the pod (Garcia-Martinez et al. 1991, Planta 184: 53–60), whereas gibberellic acid (GA3), which is present at high levels in seeds 4–8 d after anthesis, has very low abundance in pods. Gibberellins A19, A20 and A29 are most concentrated in seeds at, or shortly after, anthesis and their abundance declines rapidly with development, concomitant with the sharp increase in GA1 and GA3 content. Application of GA1 or GA3 to the leaf subtending an emasculated flower stimulated parthenocarpic fruit development. Measurement of the GA content of the pods at 4 d after anthesis indicated that only 0.002–0.5% of the applied GA was transported to the fruit, depending on dose. There was a linear relationship between GA1 content and pod weight up to about 2 ng · (g FW)−1, whereas no such correlation existed for GA3 content. The concentration of endogenous GA1 in pods from pollinated ovaries is just sufficient to give the maximum growth response. It is concluded that GA1, but not GA3, controls pod growth in pea; GA3 may be involved in early seed development. The distribution of GAs within the seeds at 4 d post anthesis was also investigated. Most of the GA1, GA8, GA19, GA20 and GA29 was present in the testa, whereas GA3 was distributed equally between testa and endosperm and GA4 was localised mainly in the endosperm. Of the GAs analysed, only GA3 and GA20 were detected in the embryo. Metabolism experiments with intact tissues and cell-free fractions indicated compartmentation of GA biosynthesis within the seed. Using 14C-labelled GA12, GA9, 2,3-didehydroGA9 and GA20 as substrates, the testa was shown to contain 13-hydroxylase and 20-oxidase activities, the endosperm, 3β-hydroxylase and 20-oxidase activities. Both tissues also produced 16,17-dihydrodiols. However, GA1 and GA3 were not obtained as products and it is unlikely that they are formed via the early 13-hydroxylation pathway. [14C]gibberellin A12, applied to the inside surface of pods in situ, was metabolised to GA19, GA20, GA29, GA29-catabolite, GA81 and GA97, but GA1 was not detected. Gibberellin A20 was metabolised by this tissue to GA29 and GA29-catabolite. Received: 23 July 1996 / Accepted: 2 September 1996  相似文献   

6.
Gibberellins A1, A8, A20 and A29 were identified by capillary gas chromatography-mass spectrometry in the pods and seeds from 5-d-old pollinated ovaries of pea (Pisum sativum cv. Alaska). These gibberellins were also identified in 4-d-old non-developing, parthenocarpic and pollinated ovaries. The level of gibberellin A1 within these ovary types was correlated with pod size. Gibberellin A1, applied to emasculated ovaries cultured in vitro, was three to five times more active than gibberellin A20. Using pollinated ovary explants cultured in vitro, the effects of inhibitors of gibberellin biosynthesis on pod growth and seed development were examined. The inhibitors retarded pod growth during the first 7 d after anthesis, and this inhibition was reversed by simultaneous application of gibberellin A3. In contrast, the inhibitors, when supplied to 4-d-old pollinated ovaries for 16 d, had little effect on seed fresh weight although they reduced the levels of endogenous gibberellins A20 and A29 in the enlarging seeds to almost zero. Paclobutrazol, which was one of the inhibitors used, is xylem-mobile and it efficiently reduced the level of seed gibberellins without being taken up into the seed. In intact fruits the pod may therefore be a source of precursors for gibberellin biosynthesis in the seed. Overall, the results indicate that gibberellin A1, present in parthenocarpic and pollinated fruits early in development, regulates pod growth. In contrast the high levels of gibberellins A20 and A29, which accumulate during seed enlargement, appear to be unnecessary for normal seed development or for subsequent germination.Abbreviations GA(a) gibberellin An - GC-MS combined gas chromatography-mass spectrometry - HPLC high-performance liquid chromatography - PFK perfluorokerosene - PVP polyvinylpyrrolidone  相似文献   

7.
Nine gibberellins (GAs) have been identified from tissues of Valencia orange (Citrus sinensis Osbeck) using gas chromatography—mass spectrometry and gas chromatography-selected ion monitoring of high-performance liquid chromatography (HPLC)-fractionated extracts. These GAs are GA1, GA3, GA8, GA19, GA20, GA29, 3-epi-GA1, 2-epi-GA29, and iso-GA3. Selected-ion monitoring and stable-isotope dilution assays have been used to estimate levels of some of these GAs in vegetative and reproductive tissues. GA29 was found to be the most abundant GA measured. GA1 was found in all samples examined, and there was always less 3-epi-GA1 than GA1. GA20 was present in most extracts. Leaves of developing inflorescence shoots contained six times more GA29 than did leaves of comparable vegetative shoots. Levels of GA29 increased during the early stages of fruit development. GA20 may be more abundant in growing fruitlets than in those about to abscise; however, there were no consistent differences in the relative amounts of the other GAs. No major differences were found between tissues of immature seeded and seedless fruit, and developing seeds did not contain high levels of any of the GAs measured. It is concluded that seed-produced GAs are not essential for normal fruit development in Valencia orange.  相似文献   

8.
The gibberellins GA1, GA3, GA4, GA7, GA9 and GA20 were quantified in vegetative and pollen cone buds of juvenile and mature trees of Pinus radiata by combined gas chromatography-mass spectrometry and selected ion monitoring (GC-MS-SIM) using deuterated GAs as internal standards. Higher levels of GA7 and GA9 and lower levels of GA4 were detected in juvenile vegetative buds compared to mature buds, and there were no differences in relation to age for GA1, GA3 and GA20. Conversely, when differences between vegetative and pollen cone buds from a mature tree were studied, the highest levels of GA1 and GA4 were found in pollen cone buds, similar levels of GA3, GA7 and GA9 were observed in both, and ten fold lower levels of GA20 were found in pollen cone buds as compared with vegetative buds. These results indicate a difference in GA metabolism in relation to both the tree age as well as the physiological status of buds: vegetative or reproductive in this conifer.  相似文献   

9.
Tissue-culture-propagated own-rooted cv. Spartan apple trees (Malus domestica Borkh.) planted in 1979 were treated in 1983 and 1985 via a soil-line trunk drench with the plant growth retardant paclobutrazol [(2RS, 3RS)-1-(4-chlorophenyl)-4.4-dimethyl-2-(1,2, 4-triazol-1-yl) pentan-3-ol]. Seeds of immature fruits from untreated and treated trees were sampled in 1989 ca 75 days after full bloom. After seeds were freeze-dried, gibberellins (GAs) were extracted, purified and fractionated via C18 reversed-phase high-performance liquid chromatography (HPLC). Gibberellins A1, A3, A4, A7, A8, A9, A15, A17, A19, A20, A24, A34, A35, A44, A51, A53, A54, A61, A62, A63 and A68 were identified by using C18 HPLC, gas chromatography-selected ion monitoring and Kovats retention indices. Eight of the GAs identified were also quantified by using deuterated internal standards. The paclobutrazol applications caused a 55% reduction of vegetative shoot elongation in 1989, but both treated and untreated trees had developed a biennial bearing pattern by that time (heavy bloom or “on year’in 1989). Levels of early 13-hydroxylation pathway GAs, viz. GA53, GA19, GA20, GA1 and also GA3, were not altered by treatment. However, GA4, GA7 and GA9 were increased 13.4, 6.5 and 3.8 times, respectively, in seeds of fruit from treated compared to untreated trees.  相似文献   

10.
The role and source of gibberellins (GAs) involved in the development of parthenocarpic fruits of Pisum sativum L. has been investigated. Gibberellins applied to the leaf adjacent to an emasculated ovary induced parthenocarpic fruit development on intact plants. The application of gibberellic acid (GA3) had to be done within 1 d of anthesis to be fully effective and the response was concentration-dependent. Gibberellin A1 and GA3 worked equally well and GA20 was less efficient. [3H]Gibberellin A1 applied to the leaf accumulated in the ovary and the accumulation was related to the growth response. These experiments show that GA applied to the leaf in high enough concentration is translocated to the ovary. Emasculated ovaries on decapitated pea plants develop without application of growth hormones. When [3H] GA1 was applied to the leaf adjacent to the ovary a substantial amount of radioactivity accumulated in the growing shoot of intact plants. In decapitated plants, however, this radioactivity was mainly found in the ovary. There it caused growth proportional to the accumulation of CA1. Application of LAB 150978, an inhibitor of GA biosynthesis, to decapitated plants inhibited parthenocarpic fruit development and this inhibition was counteracted by the application of GA3 (either to the fruit, or the leaf adjacent to the ovary, or through the lower cut end of the stem). All evidence taken together supports the view that parthenocarpic pea fruit development on topped plants depends on the import of gibberellins or their precursors, probably from the vegetative aerial parts of the plant.Abbreviations FW flesh weight - GAn gibberellin An - HPLC high-performance liquid chromatography  相似文献   

11.
The effects of applied gibberellins (GAs), GA1, GA3, GA4 and GA7 with a cytokinin, N-(2-chloro-4-pyridyl)-N′-phenylurea (CPPU) and indole-3-acetic acid (IAA) on fruit set, parthenogenesis induction and fruit expansion of a number of Rosaceae species were assessed. These included Japanese pear cv. ‘Akibae’ (self-compatible) and cv. ‘Iwate yamanashi’ (a seedless cultivar). Other Rosaceae species (Pyrus communis, Chaenomeles sinensis, Cydonia oblonga, and Malus pumila) were also investigated. GA4, GA7 and CPPU are very effective in inducing parthenocarpic fruit growth, whereas GA1, GA3 and IAA, have no ability to induce parthenogenesis in Japanese pear. GA4- and GA7-induced parthenocarpic fruit tended to be smaller in size, higher in flesh hardness, and showed advanced fruit ripening in comparison to pollinated fruit and to parthenocarpic fruit induced by CPPU. GA4- and GA7-induced parthenocarpic fruit also had an increased pedicel length and fruit shape index and also showed a slight protrusion of the calyx end. CPPU, GA4 and GA7 alone or combination with uniconazole were also active in inducing parthenogenesis in three other Rosaceae species, although final fruit set was extremely low. GA1 was essentially inactive in promoting fruit expansion unlike the other bioactive GAs, whose effectiveness in promoting fruit cell expansion was as follow: GA4 ≈ GA7 > GA3 > GA1.  相似文献   

12.
Current evidence in citrus indicates that gibberellins (GAs) are main determinants of early fruit set while subsequent growth of developing fruits is mostly dependent upon carbohydrate availability. In this work, branch girdling performed at anthesis in Satsuma mandarin (Citrus unshiu (Mak.) Marc.) cv. Okitsu transitorily reduced early abscission rates (12–32 days after anthesis, DAA) delaying initially the process of natural fruitlet drop. The effects of girdling on growth, gibberellin (GA) and carbohydrate concentrations in developing ovaries and fruitlets were assessed during this initial growth stage (0–69 DAA). In girdled branches, abscission rate reduction was preceded by elevated concentrations of carbohydrate and GA in developing ovaries and fruitlets. Girdling at anthesis stimulated higher hexose (21 DAA) and starch (6–20 DAA) concentrations and also higher GA1 (6 DAA), GA19 (13–20 DAA) and GA20 (6–20 DAA). The results established a relationship between the reduction of early abscission rates and higher concentrations of carbohydrates and GAs induced by girdling in developing fruitlets. These findings revealed that girdling certainly increased GA concentration and strongly suggested that its effect on early fruitlet abscission delay is likely mediated by both GA and carbohydrates.  相似文献   

13.
The induction of parthenocarpic fruit set was investigated using the apple cvs. Golden Delicious and Jonagold. The gibberellins GA3, GA4, GA5 and GA7 and the synthetic phenylurea-type cytokinin CPPU (N-(2-chloro-4-pyridyl)-N-phenylurea), were applied alone and in combination to unpollinated flowers at the end of petal fall. Gibberellins induced only a marginal final set of parthenocarpic fruits. CPPU sprays were more effective, particularly in the first year. When applied in combination, CPPU and gibberellins had a positive synergistic effect on parthenocarpic fruit set and fruit size, but a negative effect on flower induction the next year. After CPPU + GA sprays, percent fruit set was similar, or greater, compared to natural pollinated trees. The parthenocarpic fruits induced by CPPU + GA had an increased length to diameter ratio. CPPU stimulated, and GA4 and GA7 reduced, the russeting of the parthenocarpic fruits. The internal quality of the fruits was hardly affected, but Ca-deficiency symptoms occurred more frequently in parthenocarpic fruits.  相似文献   

14.
Flower buds of peach (Prunus persica L.) trees, cv Novedad de Cordoba (Argentina), were collected near the end of the dormant period and immediately before anthesis. After removal of scale leaves, morphological observations of representative buds, made on transverse and longitudinal microtome sections, showed that all verticils making up the flower are present in an undifferentiated form during the dormant period (June). Flower buds collected at the end of dormant period (August) showed additional growth and differentiation, at which time formation of two ovules was beginning in the unicarpelar gynoecium. Dehiscence of anthers had not yet occurred 10 days before full bloom, and the ovules were still developing. Free endogenous gibberellin (GA)-like substances were quantified by bioassay (Tan-ginbozu dwarf rice microdrop) after SiO2 partition column chromatography, reversed phase C18-high performance liquid chromatography, and finally Nucleosil [N(CH3)2]high performance liquid chromatography. Bioactive fractions were then subjected to capillary gas chromatography-mass spectrometry-selected ion monitoring (GC-MS-SIM). Gibberellins A1, A3, and A8 were tentatively identified in peach flower buds using GC-SIM and Kovat's retention indices, and relative amounts approximated by GC-SIM (2:8:6 for GA1, GA3, and GA8, respectively). The highest concentration (330 nanograms per gram dry weight) of free GA1/GA3 was found in dormant buds (June) and diminished thereafter. The concentration free of GA1/GA3 did not increase immediately prior to bud break. However, high GA1/GA3 concentrations occurred during stages where rate of growth and cellular differentiation of (mainly fertile) verticils can be influenced.  相似文献   

15.
The response of unpollinated ovary explants ofPisum sativum L. cv. Alaska No. 7 to several plant growth regulators and nutrients has been studied. Explants consisted of a segment of stem and an emasculated flower with or without the adjacent leaf. They were made on the day equivalent to anthesis and were cultured in a liquid medium. Growth regulators were applied either in the solution or directly to the ovaries. Giberellic acid (GA3) in the presence of sucrose, but not indole-3-acetic acid or N6-(Δ2-isopentenyl)-adenine (2iP), induced fruit set and development of parthenocarpic fruits, the final length of these being a function of the intensity of the GA3 treatment. The capacity of ovaries to respond fully to GA3 was not lost after incubation of explants in water or 50 mM sucrose for 1 day and was similar in explants made between the day of anthesis and 3 days later. Limited growth was obtained with 100 mM sucrose alone but this effect was counteracted by 2′-isopropyl-4′-(trimethyl ammonium chloride)-5′-methylphenyl piperidine-1-carboxylate (AMO-1618). This inhibitor was ineffective when GA3 was applied to the ovary. The development of the fruit was proportional to the length of the segment of stem up to 5 cm. The presence of the leaf in the explant enhanced the development of the fruit. These results indicate that a gibberellin is necessary for setting and development of fruits from cultured ovaries and that this effect depends on an appropriate source of nutrients. The course of development of parthenocarpic fruits on explants was similar to that of seeded fruits on the intact plant. The cultured pea ovary systemoffers convenient means to investigate the role of gibberellins and nutrients in fruit set and development.  相似文献   

16.
The radio-labeled gibberellins GA1, GA3,GA4, and GA7 were applied to intact developing applefruits (Malus domestica Borkh. cv. Jonagold) during theperiod when GAs are suggested to inhibit flower bud induction for the followingyear. Radioactivity from these compounds was found to be transported intoadjacent tissues as there are pedicels and bourses (4%). Application topedicels, after removal of the fruits, enhanced the transport into adjacentbourses up to 11%. The bud-carrying lateral bourse shoots contained onlyminor amounts of radioactivity on average 0.4% in both cases. Theseexport rates were identical, 1 or 5 days after application.After application of the corresponding deuterium-labeled GAs and analyses bymass spectrometry the specific metabolization of GA1 toGA1 13-O-glucoside and of GA3 to GA313-O-glucoside was demonstrated. Additional metabolites of GA1 andGA3 were not detected. After fruit application of GA3 theratio of GA3 to GA3 13-O-glucoside was found to be 1:2 inthe fruit. Pedicel application led to ratios of 1:4 and 1:5, respectively, inthe pedicel and in the adjacent bourse. After the application of GA4and GA7, neither glucosylation products nor other GA-like metabolitescould be identified.This is the first report of the metabolism of GAs to GA 13-O-glucosides indeveloping apple fruits. The possible function of the GAs as a signal in flowerbud formation for the following year is discussed.  相似文献   

17.
Two aldehydic C20-gibberellins, L-2 and L-4, were isolated from the immature fruits of yellow lupine (Lupinus luteus L.). L-2 was shown to have the structure II and named gibberellin A23. L-4 was identified as gibberellin A19(VI). Two new C20-gibberellins, tentatively called 3,13-dihydroxy GA15(IV) and 13-hydroxy GA15(VIII), were derived from gibberellins, A23 and A19, respectively. The biological activities of four 3,13-dihydroxy C20-gibberellins-GA18(I), GA23(II), GA28(III) and 3,13-dihydroxy GA15(IV), which were isolated from the fruits except for 3,13-dihydroxy GA15—were compared in six gibberellin bioassays.  相似文献   

18.
In addition to the previously-reported gibberellins: GA1; GA8, GA20 and GA29 (García-Martínez et al., 1987, Planta 170, 130–137), GA3 and GA19 were identified by combined gas chromatography-mass spectrometry in pods and ovules of 4-d-old pollinated pea (Pisum sativum cv. Alaska) ovaries. Pods contained additionally GA17, GA81 (2-hydroxy GA20) and GA29-catabolite. The concentrations of GA1, GA3, GA8, GA19, GA20 and GA29 were higher in the ovules than in the pod, although, with the exception of GA3, the total content of these GAs in the pod exceeded that in the seeds. About 80% of the GA3 content of the ovary was present in the seeds. The concentrations of GA19 and GA20 in pollinated ovaries remained fairly constant for the first 12 ds after an thesis, after which they increased sharply. In contrast, GA1 and GA3 concentrations were maximal at 7 d and 4–6 d, respectively, after anthesis, at about the time of maximum pod growth rate, and declined thereafter. Emasculated ovaries at anthesis contained GA8, GA19 and GA20 at concentrations comparable with pollinated fruit, but they decreased rapidly. Gibberellins a1 and A3 were present in only trace amounts in emasculated ovaries at any stage. Parthenocarpic fruit, produced by decapitating plants immediately above an emasculated flower, or by treating such flowers with 2,4-dichlorophenoxyacetic acid or GA7, contained GA19 and GA20 at similar concentrations to seeded fruit, but very low amounts of GA1 and GA3 Thus, it appears that the presence of fertilised ovules is necessary for the synthesis of these last two GAs. Mature leaves and leaf diffusates contained GA1, GA8, GA19 and GA20 as determined by combined gas chromatography-mass spectrometry using selected ion monitoring. This provides further evidence that vegetative tissues are a possible alternative source of GAs for fruit-set, particularly in decapitated plants.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - FW fresh weight - GAn gibberellin An - GC-MS combined gas chromatography-mass spectrometry - HPLC high-performance liquid chromatography - KRI Kovats retention index - m/z mass to charge ratio We thank Mr M.J. Lewis for qualitative GC-MS analyses and Ms M.V. Cuthbert (LARS), R. Martinez Pardo and T. Sabater (IATA) for technical assistance. We are also grateful to Professor B.O. Phinney, University of California, Los Angeles, for gifts of [17-13C]GA8 and -GA29 and to Mr Paul Gaskin, University of Bristol, for the mass spectrum of GA29-catabolite and for a sample of GA81 The work in Spain was supported by Dirección General de Investigación Cientifica y Técnica (grant PB87-0402 to J.L.G.-M.). We also acknowledge the British Council and Ministerio de Educacion y Ciencia for travel grants through Accion Integrada Hispano-Britanica 56/142 (J.L.G.-M. and P.H.).  相似文献   

19.
The effects of 3-deoxygibberellin C (DGC) on the growth-promoting actions of gibberellins A1, A2, A3, A4, A5, A7, A8, A9, A13, A18, A19, A20, and A23 (GAn) as well as 13-deoxygibberellin A5 (deoxy-GA5) were tested with seedlings of gibberellin-deficient dwarf mutants (d2 and d5) of maize (Zea mays L.). It was found that DGC promoted the actions of gibberellins having both C-1 double bond and C-3 axial hydroxyl group, and it inhibited the action of gibberellins having the saturated ring A and lacking the C-3 axial hydroxyl group, whereas it did not affect that of the ones having the hydroxyl group. The presence of C-2 double bond, as in GA5 and deoxy-GA5, diminished the inhibitory action of DGC. The DGC inhibition was alleviated by raising the doses of the relevant GAs, suggesting that it is a competitive inhibition. These results and the finding that the growth of normal maize and rice seedlings are inhibited by DGC indicate that GA9, GA19, GA20 or other gibberellins having ring A of the same structure are involved in the growth of these plants as active form(s) or as intermediate(s) leading to the active form(s).  相似文献   

20.
This study aimed to determine if self‐pollination is needed to trigger facultative parthenocarpy in self‐incompatible Clementine mandarins (Citrus clementina Hort. ex Tan.). ‘Marisol’ and ‘Clemenules’ mandarins were selected, and self‐pollinated and un‐pollinated flowers from both cultivars were used for comparison. These mandarins are always seedless after self‐pollination and show high and low ability to develop substantial parthenocarpic fruits, respectively. The time‐course for pollen grain germination, tube growth and ovule abortion was analyzed as well as that for carbohydrates, active gibberellins (GA1 and GA4), auxin (IAA) and abscisic acid (ABA) content in the ovary. ‘Clemenules’ showed higher pollen grain germination, but pollen tube development was arrested in the upper style 9 days after pollination in both cultivars. Self‐pollination did not stimulate parthenocarpy, whereas both un‐pollinated and self‐pollinated ovaries set fruit regardless of the cultivar. On the other hand, ‘Marisol’ un‐pollinated flowers showed greater parthenocarpic ovary growth than ‘Clemenules’ un‐pollinated flowers, i.e. higher ovule abortion rate (+21%), higher fruit set (+44%) and higher fruit weight (+50%). Further, the greater parthenocarpic ability of ‘Marisol’ paralleled higher levels of GA1 in the ovary (+34% at anthesis). ‘Marisol’ ovary also showed higher hexoses and starch mobilization, but lower ABA levels (?64% at anthesis). Self‐pollination did not modify carbohydrates or GA content in the ovary compared to un‐pollination. Results indicate that parthenocarpy in the Clementine mandarin is pollination‐independent with its ability to set depending on the ovary hormone levels. These findings suggest that parthenocarpy in fertile self‐incompatible mandarins is constitutively regulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号