首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The IGF‐1 signaling pathway plays an important role in regulating longevity. To identify the genetic loci and genes that regulate plasma IGF‐1 levels, we intercrossed MRL/MpJ and SM/J, inbred mouse strains that differ in IGF‐1 levels. Quantitative trait loci (QTL) analysis of IGF‐1 levels of these F2 mice detected four QTL on chromosomes (Chrs) 9 (48 Mb), 10 (86 Mb), 15 (18 Mb), and 17 (85 Mb). Haplotype association mapping of IGF‐1 levels in 28 domesticated inbred strains identified three suggestive loci in females on Chrs 2 (13 Mb), 10 (88 Mb), and 17 (28 Mb) and in four males on Chrs 1 (159 Mb), 3 (52 and 58 Mb), and 16 (74 Mb). Except for the QTL on Chr 9 and 16, all loci co‐localized with IGF‐1 QTL previously identified in other mouse crosses. The most significant locus was the QTL on Chr 10, which contains the Igf1 gene and which had a LOD score of 31.8. Haplotype analysis among 28 domesticated inbred strains revealed a major QTL on Chr 10 overlapping with the QTL identified in the F2 mice. This locus showed three major haplotypes; strains with haplotype 1 had significantly lower plasma IGF‐1 and extended longevity (P < 0.05) than strains with haplotype 2 or 3. Bioinformatic analysis, combined with sequencing and expression studies, showed that Igf1 is the most likely QTL gene, but that other genes may also play a role in this strong QTL.  相似文献   

2.
An elite, three-generation family from the USDA Meat Animal Research Center twinning population was examined for evidence of ovulation rate quantitative trait loci (QTL). This work was both a continuation of previously reported results suggesting evidence for ovulation rate QTL on bovine Chromosome (Chr) 7 and an extension of a genome-wide search for QTL. Additional markers were typed on Chr 7 to facilitate interval mapping and testing of the hypothesis of one versus two QTL on that chromosome. In addition, 14 other informative markers were added to a selective genotyping genome screening of this family, and markers exhibiting nominal significance were used to identify chromosomal regions that were then subjected to more exhaustive analysis. For Chr 7, a total of 12 markers were typed over a region spanning the proximal two-thirds of the chromosome. Results from interval mapping analyses indicated evidence suggestive of the presence of QTL (nominal P < 0.00077) within this region. Subsequent analysis with a model postulating two QTL provided evidence (P < 0.05) for two rather than one QTL on this chromosome. Preliminary analysis with additional markers indicated nominal significance (P < 0.05) for regions of Chrs 5, 10, and 19. Each of these regions was then typed with additional markers for the entire three-generation pedigree. Significant evidence (P < 0.000026) of ovulation rate QTL was found for Chrs 5 and 19, while support on Chr 10 failed to exceed a suggestive linkage threshold (P > 0.00077). Received: 14 May 1999 / Accepted: 14 October 1999  相似文献   

3.
The LEC rat has been reported to exhibit X-ray hypersensitivity and deficiency in DNA double-strand break (DSB) repair. The present study was performed to map the locus responsible for this phenotype, the xhs (X-ray hypersensitivity), as the first step in identifying the responsible gene. Analysis of the progeny of (BN × LEC)F1× LEC backcrosses indicated that the X-ray hypersensitive phenotype was controlled by multiple genetic loci in contrast to the results reported previously. Quantitative trait loci (QTL) linkage analysis revealed two responsible loci located on Chromosomes (Chr) 4 and 1. QTL on Chr 4 exhibited very strong linkage to the X-ray hypersensitive phenotype, while QTL on Chr 1 showed weak linkage. The Rad52 locus, mutation of which results in hypersensitivity to ionizing radiation and impairment of DNA DSB repair in yeast, was reported to be located on the synteneic regions of mouse Chr 6 and human Chr 12. However, mapping of the rat Rad52 locus indicated that it was located 23 cM distal to the QTL on Chr 4. Furthermore, none of the radio-sensitivity-related loci mapped previously in the rat chromosome were identical to the QTL on Chrs 4 and 1 in the LEC rat. Thus, it seems that X-ray hypersensitivity in the LEC rat is caused by mutation(s) in as-yet-undefined genes. Received: 14 February 2000 / Accepted: 17 May 2000  相似文献   

4.
EL/Suz (EL) mice experience recurrent seizures that are similar to common partial complex epilepsy in humans. In the mice, seizures occur naturally at 90–100 days of age, but can be induced in younger mice and analyzed as a semi-quantitative trait after gentle rhythmic stimulation. A previous genetic mapping study of EL backcrosses to the strains ABP/LeJ or DBA/2J showed two quantitative trait loci (QTL) with large effects on seizure frequency (El1, Chr 9; El2, Chr 2) and implied the existence of other QTL with lesser effects. To further the understanding of EL-derived seizure alleles, we examined intercross progeny of EL and the strains ABP/LeJ and DDY/Jcl, and also a backcross of (EL x DDY)F1 hybrids to DDY. A new large-effect seizure frequency QTL was found (El5, Chr 14), a more minor QTL confirmed (El3, Chr 10), and two additional QTL proposed (El4, Chr 9; El6, Chr 11). The serotonin receptor gene, Htr2a, maps near and is a candidate for El5, and linkages of other serotonin receptor genes to seizure frequency QTL are noted. In addition, a strong gender effect was revealed, and epistasis was found between Chr 9 and Chr 14 markers. Despite this progress, however, our results revealed a more complex determinism of epilepsy in EL mice than previously described. In particular, no single El locus or pair was essential for frequent seizures, as QTL with large effects, such as El5, El2, and El1, were highly dependent on genetic context. Our studies highlight the importance of gene interaction in some complex mammalian traits defined by natural variation.  相似文献   

5.
Leaf area is an important parameter in oil palm breeding as it is positively correlated with oil yield. However, measurement of leaf area is tedious and also destructive. In the present study, a breeding population with 145 palms derived from a cross between Deli Dura and Avros Pisifera was used to construct a high-density linkage map and identify quantitative trait loci (QTL) for leaf area in oil palm. Using genotyping by sequencing, a linkage map containing 2413 SNPs was constructed. The total length of the linkage map was 1161.89 cM, with an average marker spacing of 0.48 cM. Based on the continuous phenotyping of leaf area from 2010 to 2015, two suggestive QTL for leaf area were mapped on chromosomes (Chr) 3 and 9. The allelic effects of the QTL associated with leaf area in the mapping population were estimated by linear regression using ordinary least squares method. The QTL on Chr 9 explained 13.3% of phenotypic variation for leaf area. A candidate gene, ARC5, within the narrow interval of QTL on Chr 9 was identified. The gene was significantly higher expressed in leaf than root and fruit of oil palm. This high-quality and SNP-based map supplies a base to fine map QTL for agronomic traits in oil palm, and the markers closely linked to the stable QTL may be used in marker-assisted selection in oil palm breeding.  相似文献   

6.
A genome-wide scan for quantitative trait loci (QTLs) controlling body weight at 10 weeks after birth was carried out in a population of 387 intersubspecific backcross mice derived from a cross between C57BL/6J inbred mice (Mus musculus domesticus) and wild mice (M. m. castaneus) captured in the Philippines, in order to discover novel QTLs from the wild mice that have about 60% lower body weight than C57BL/6J. By interval mapping, we detected four QTLs: a highly significant QTL on Chromosome (Chr) 2, which was common in both sexes; two significant QTLs on Chr 13, one male-specific and the other female-specific; and a suggestive male-specific QTL on X Chr. By composite interval mapping, we confirmed the presence of the three QTLs on Chrs 2 and 13, but not of the male-specific X-linked QTL. The composite interval mapping analysis newly identified three QTLs: a significant male-specific QTL on Chr 11 and two highly significant female-specific QTLs on Chrs 9 and X. Individual QTLs explained 3.8–11.6% of the phenotypic variance, and all the QTL alleles derived from the wild mice decreased body weight. A two-way analysis of variance revealed a significant epistatic interaction between the Chr 2 QTL and the background marker locus D12Mit4 on Chr 12 only in males. The interaction effect unexpectedly increased body weight. The chromosomal region containing the Chr 2 QTL did not coincide with those of growth or fatness QTLs mapped in previous studies. These results suggest that a population of wild mice may play an important role as new sources of valuable QTLs. Received: 14 January 2000 / Accepted: 14 April 2000  相似文献   

7.
The inheritance of adiposity levels has been investigated in an intercross of the obese, diabetes-prone NZO and the small, lean SM mouse strains. Adiposity index (AI) was defined as the sum of four fat pad weights divided by body weight. DNA pools from fat and lean mice were analyzed with microsatellite variants to screen the genome for quantitative trait loci (QTLs) affecting AI. Ten significant QTLs affecting AI were identified on Chromosome (Chr) 1 (three loci), Chr 2, Chr 5 (two loci), Chr 6 (two loci), Chr 7, and Chr 17. Most of the QTLs appear to be novel. Several QTLs differentially affect specific fat depots. Thus, Chr 2 and Chr 7 QTLs affect gonadal more than inguinal fat, while the converse is true for the Chr 17 QTL. Gender influences the expression of several of the QTLs. For example, effects of the proximal Chr 1 QTL (Obq7) on AI appears to be primarily in males. The proximal AI QTL on Chr 6 (Obq13) maps near the neuropeptide Y (Npy) locus. Sequence analysis of the Npy gene revealed a 1-nucleotide deletion within a highly conserved portion of the 3′ untranslated region in strain NZO. However, the deletion is polymorphic among mouse strains. Furthermore, lack of association between this same variant and AI in previously analyzed crosses raises doubt that it is the basis of Obq13. The present cross is the fourth in a series of intercrosses among 10 inbred strains arranged such that each strain is crossed with each adjacent strain within a circle. This design affords multiple opportunities to analyze each segregating QTL. Received: 17 July 2000 / Accepted: 9 October 2000  相似文献   

8.
Barbiturate dependence is associated with the development of physiological dependence (withdrawal), tolerance, or a maladaptive pattern of drug use. Analysis of strain and individual differences with animal models for physiological dependence liability are useful means to identify potential genetic determinants of liability in humans. Behavioral and quantitative trait locus (QTL) mapping analyses were conducted with mice that are resistant versus sensitive to pentobarbital withdrawal. With a multi-stage genetic mapping strategy, a pentobarbital withdrawal QTL (Pbw1) was mapped to the distal region of mouse Chromosome (Chr) 1 and may be identical to an alcohol withdrawal QTL mapped to this chromosomal region. Two suggestive QTLs for pentobarbital withdrawal, both in proximity to QTLs definitely mapped for alcohol withdrawal, were also tentatively identified. These were on Chr 11 in proximity to a gene cluster including several members of the GABAA receptor gene family, and on Chr 4 near a locus associated with β-carboline-induced seizure severity. These data represent the first detection and mapping of loci influencing risk for physiological dependence on barbiturates, and suggest the involvement of common genes in physiological dependence on pentobarbital and alcohol. Received: 14 October 1998 / Accepted: 19 January 1999  相似文献   

9.
We report the identification of a single major chromosomal region controlling natural killer (NK) cell-like activity in rainbow trout (Oncorhynchus mykiss). A genetic map based on 484 AFLP and 39 microsatellite genotypes from 106 doubled haploid fish was constructed. These fish were produced by androgenesis from a hybrid of two clonal lines divergent in NK-like activity. NK-like activities for 75 of the doubled haploids were quantified by an in vitro chromium release assay utilizing 51Cr-labeled YAC-1 target cells. Composite interval mapping revealed a single major quantitative trait locus (QTL) associated with NK-like activity in this rainbow trout model. Genetic mapping revealed this QTL to also be unlinked to: fragmented MHC class I and MHC class II regions, the leukocyte receptor cluster, the natural killer cell enhancement factor (NKEF) gene, the RAG-1 gene, and two QTL associated with resistance to infectious pancreatic necrosis virus in rainbow trout. Collectively, these results extend the utility of rainbow trout as an immunological model and are consistent with the idea that a single chromosomal region homologous to the natural killer cell complex (NKC) located on syntenic portions of mouse chromosome (Chr) 6, human Chr 12, and rat Chr 4 may exist in a lower vertebrate model.  相似文献   

10.
The renin locus (Ren) on rat Chromosome (Chr) 13 had previously been shown to cosegregate with blood pressure in crosses involving Dahl salt-sensitive (S) and Dahl salt-resistant (R) rats. In the present work, interval mapping of blood pressure on Chr 13 with a large F2 (S × R), n = 233, population yielded a maximum LOD = 4.2 for linkage to blood pressure, but the quantitative trait locus (QTL) was only poorly localized to a large 35-centiMorgan (cM) segment of Chr 13. In the linkage analysis, the S-rat QTL allele (S) was associated with higher, and the R-rat QTL allele (R) with lower blood pressure, the difference between homozygotes being about 20 mm Hg. A congenic strain was made by introgressing the R-rat Ren allele into the recipient S strain. This congenic strain showed a 24 mm Hg reduction (P = 0.004) in blood pressure compared with S rats for rats fed 2% NaCl diet for 24 days; this difference was confirmed by two other independent tests. Two congenic substrains were derived from the first congenic strain with shorter R Chr 13 segments on the S background. Comparisons among these congenic strains showed that a blood pressure QTL was in the 24-cM chromosomal segment between Syt2 and D13M1Mit108. This segment does not include the renin locus, which is thus excluded from being the gene on rat Chr 13 responsible for genetic differences in blood pressure detected by linkage analysis. Received: 20 December 1996 / Accepted: 7 April 1997  相似文献   

11.
A quantitative trait locus for live weight maps to bovine Chromosome 23   总被引:2,自引:0,他引:2  
A multiple-marker mapping approach was used to search for quantitative trait loci (QTLs) affecting production, health, and fertility traits in Finnish Ayrshire dairy cattle. As part of a whole-genome scan, altogether 469 bulls were genotyped for six microsatellite loci in 12 families on Chromosome (Chr) 23. Both multiple-marker interval mapping with regression and maximum-likelihood methods were applied with a granddaughter design. Eighteen traits, belonging to 11 trait groups, were included in the analysis. One QTL exceeded experiment level and one QTL genome level significance thresholds. Across-families analysis provided strong evidence (Pexperiment= 0.0314) for a QTL affecting live weight. The QTL for live weight maps between markers BM1258 and BoLA DRBP1. A QTL significant at genome level (Pgenome= 0.0087) was mapped for veterinary treatment, and the putative QTL probably affects susceptibility to milk fever or ketosis. In addition, three traits exceeded the chromosome 5% significance threshold: protein percentage of milk, calf mortality (sire), and milking speed. In within-family analyses, protein percentage was associated with markers in one family (LOD score = 4.5). Received: 14 December 1998 / Accepted: 28 March 1998  相似文献   

12.
The genes for insulin-like growth factor 1 receptor (IGF1R), aggrecan (AGC1), β2-microglobulin (B2M), and an H6-related gene have been mapped to a single chicken microchromosome by genetic linkage analysis. In addition, a second H6-related gene was mapped to chicken macrochromosome 3. The Igf1r and Agc1 loci are syntenic on mouse Chr 7, together with Hmx3, an H6-like locus. This suggests that the H6-related locus, which maps to the chicken microchromosome in this study, is the homolog of mouse Hmx3. The IGF1R, AGC1, and B2M loci are located on human Chr 15, probably in the same order as found for this chicken microchromosome. This conserved segment, however, is not entirely conserved in the mouse and is split between Chr 7 (Igf1r-Agc) and 2 (B2m). This comparison also predicts that the HMX3 locus may map to the short arm of human Chr 15. The conserved segment defined by the IGF1R–AGC1–HMX3—B2M loci is approximately 21–35 Mb in length and probably covers the entire chicken microchromosome. These results suggest that a segment of human Chr 15 has been conserved as a chicken microchromosome. The significance of this result is discussed with reference to the evolution of the avian and mammalian genomes. Received: 7 December 1996 / Accepted: 7 February 1997  相似文献   

13.
The objective of this study was to identify twinning rate quantitative trait loci (QTL) by typing pooled samples in a preliminary screening followed by interval mapping to test QTL effects. Four elite North American Holstein half-sib sire families with high twinning rate predicted transmitting abilities (PTA) were used in this study. Chromosomes 5, 7, 19 and 23 were not genotyped as these chromosomes were scanned for QTL in these families in a previous study. DNA was extracted from phenotypically extreme sons in each sire family. Two pools were prepared from sons of sires in each phenotypic tail, two each for high and low PTA levels for twinning rates. Each pool contained DNA from 4 to 15% of all sons of the sire depending on family. A total of 268 fluorescently labelled microsatellite markers were tested for heterozygosity in sires. About 135--170 informative markers per family were genotyped using pooled DNA samples. Based on the preliminary evidence for potential twinning rate QTL from pooled typing, interval mapping was performed subsequently on 12 chromosomal regions by family combinations. Evidence of QTL for twinning rate was found in one family on BTA 21 and 29 at a chromosome-wide P<0.05 and on BTA 8, 10 and 14 with a chromosome-wide P<0.01.  相似文献   

14.
A substantial genetic contribution to baseline peripheral blood counts has been established. We performed quantitative trait locus/loci (QTL) analyses to identify chromosome (Chr) regions harboring genes influencing the baseline white blood cell (WBC) count, platelet (Plt) count, and mean platelet volume (MPV) in F2 intercrosses between NZW/LacJ, SM/J, and C57BLKS/J inbred mice. We identified six significant WBC QTL: Wbcq1 (peak LOD score at 38 cM, Chr 1), Wbcq2 (42 cM, Chr 3), Wbcq3 (0 cM, Chr 15), Wbcq4 (58 cM, Chr 1), Wbcq5 (82 cM, Chr 1), and Wbcq6 (8 cM, Chr 14). Three significant Plt QTL were identified: Pltq1 (24 cM, Chr 2), Pltq2 (36 cM, Chr 7), and Pltq3 (10 cM, Chr 12). Two significant MPV QTL were identified, Mpvq1 (62 cM, Chr 15) and Mpvq2 (44 cM, Chr 8). In total, the WBC QTL accounted for up to 31% of the total variance in baseline WBC count, while the Plt and MPV QTL accounted for up to 30% and 49% of the total variance, respectively. These analyses underscore the genetic complexity underlying these traits in normal populations and provide the basis for future studies to identify novel genes involved in the regulation of mammalian hematopoiesis.  相似文献   

15.
The Dahl salt-sensitive rat is one of the principal animal models of hereditary hypertension. Genome-wide searches were undertaken to detect quantitative trait loci (QTLs) that influence blood pressure, cardiac mass, and body weight in four F2 populations derived from Dahl salt-sensitive rats and different inbred normotensive control strains of rat. We detected three QTLs associated with one or more of the phenotypes, using a stringent statistical criterion for linkage (p < 0.00003). These included a novel QTL linked to blood pressure on rat Chromosome (Chr) 12, and another QTL on rat Chr 3 linked to body weight. A QTL on rat Chr 10 for which linkage to blood pressure has been described in other crosses was found to be a principal determinant of blood pressure and cardiac mass in some but not all of the crosses examined here. Three other regions showed evidence of linkage to these phenotypes with a less stringent statistical criterion of linkage at QTLs previously reported in other studies. As part of our study, microsatellite markers have been developed for three candidate genes for investigation in hypertension, and the genes have been localized by linkage mapping. These are: the rat Gs alpha subunit (Gnas) gene, the alpha-1B adrenergic receptor (Adra1b), and the Na+, K+-ATPase beta2 subunit (Atp1b2) gene. Received: 29 June 1998 / Accepted: 30 October 1998  相似文献   

16.
Familial combined hyperlipidemia (FCHL) is a common genetic dyslipidemia predisposing to premature coronary heart disease (CHD). We previously identified a locus for FCHL on human Chromosome (Chr) 1q21-q23 in 31 Finnish FCHL families. We also mapped a gene for combined hyperlipidemia (Hyplip1) to a potentially orthologous region of mouse Chr 3 in the HcB-19/Dem mouse model of FCHL. The human FCHL locus was, however, originally mapped about 5 Mb telomeric to the synteny border, the centromeric part of which is homologous to mouse Chr 3 and the telomeric part to mouse Chr 1. To further localize the human Hyplip1 homolog and estimate its distance from the peak linkage markers, we fine-mapped the Hyplip1 locus and defined the borders of the region of conserved synteny between human and mouse. This involved establishing a physical map of a bacterial artificial chromosome (BAC) contig across the Hyplip1 locus and hybridizing a set of BACs to both human and mouse chromosomes by fluorescence in situ hybridization (FISH). We narrowed the location of the mouse Hyplip1 gene to a 1.5-cM region that is homologous only with human 1q21 and within approximately 5–10 Mb of the peak marker for linkage to FCHL. FCHL is a complex disorder and this distance may, thus, reflect the well-known problems hampering the mapping of complex disorders. Further studies identifying and sequencing the Hyplip1 gene will show whether the same gene predisposes to hyperlipidemia in human and mouse. Received: 9 September 2000 / Accepted: 30 October 2000  相似文献   

17.
Rab proteins are small GTP-ases localized to distinct membrane compartments in eukaryotic cells and regulating specific steps of intracellular vesicular membrane traffic. The Rab7 protein is localized to the late endosomal compartment and controls late steps of endocytosis. We have isolated, by library screening, the 5′ region, including the promoter, of the mouse Rab7 gene and a Rab7 pseudogene. We have mapped, by genetic linkage analysis, the mouse Rab7 gene on Chromosome (Chr) 6 and the Rab7-ps1 pseudogene on Chr 9, where the Rab7 gene has been previously reported to map. By radiation hybrid mapping, we have located the human RAB7 gene on Chr 3, in a region homologous to the mouse Chr 6, where the Rab7 gene maps. Received: 27 October 1997 / Accepted: 1 January 1998  相似文献   

18.
The chicken natural resistance-associated macrophage protein 1 (NRAMP1) gene has been mapped by linkage analysis by use of a reference panel to develop the chicken molecular genetic linkage map and by fluorescence in situ hybridization. The chicken homolog of the murine Nramp1 gene was mapped to a linkage group located on Chromosome (Chr) 7q13, which includes three genes (CD28, NDUSF1, and EF1B) that have previously been mapped either to mouse Chr 1 or to human Chr 2q. Physical mapping by pulsed-field gel electrophoresis revealed that NRAMP1 is tightly linked to the villin gene and that the genomic organization (gene order and presence of CpG islands) of the chromosomal region carrying NRAMP1 is well conserved between the chicken and mammalian genomes. The regions on mouse Chr 1, human Chr 2q, and chicken Chr 7q that encompass NRAMP1 represent large conserved chromosomal segments between the mammalian and avian genomes. The chromosome mapping of the chicken NRAMP1 gene is a first step in determining its possible role in differential susceptibility to salmonellosis in this species.  相似文献   

19.
Fusarium wilt (FW) is one of the most economically damaging cotton diseases worldwide, causing yellowing, wilting, defoliation, vascular tissue damage and ultimately death. Identification of molecular markers linked to FW genes is vital to incorporate resistance into elite cotton cultivars. An intraspecific F2 in Gossypium hirsutum L. was developed by crossing with a highly resistant cultivar Zhongmiansuo 35 (ZMS35) and a susceptible cultivar Junmian 1 to screen simple sequence repeats (SSRs) closely linked to the FW resistance gene. FW was identified in F2:3 families by evaluating seedling leaf symptoms and vascular tissue damage at plant maturity under natural field infection conditions over 2 years. The results showed that FW resistance segregated in a 3:1 ratio as a simple monogenic trait in F2:3 families. Molecular mapping identified a FW resistance gene closely linked with the SSR marker JESPR304−280 in chromosome D3(c17). We proposed to name this gene FW R . A composite interval mapping method detected four QTLs for FW resistance in Chr.A7(c7), D1(c15), D9(c23) and D3, respectively. Among them, one major QTL (LOD > 20) was tagged near marker JESPR304 within an interval of 0.06–0.2 cM, and explained over 52.5–60.9% of the total phenotypic variance. The data confirmed the existence of a major gene in Chr.D3. This is the first report of molecular mapping of a major gene contributing FW resistance in cotton. The present research therefore provides an opportunity to understand the genetic control of resistance to FW and conduct molecular marker-assisted selection breeding to develop FW resistant cultivars.  相似文献   

20.
Our understanding of the molecular genetic basis of several key performance traits in pigs has been significantly advanced through the quantitative trait loci (QTL) mapping approach. However, in contrast to growth and fatness traits, the genetic basis of feed intake traits has rarely been investigated through QTL mapping. Since feed intake is an important component of efficient pig production, the identification of QTL affecting feed intake may lead to the identification of genetic markers that can be used in selection programs. In this study a QTL analysis for feed intake, feeding behavior, and growth traits was performed in an F2 population derived from a cross between Chinese Meishan and European Large White pigs. A QTL with a significant effect on daily feed intake (DFI) was identified on Sus scrofa Chromosome 2 (SSC2). A number of suggestive QTL with effects on daily gain, feed conversion, and feeding behavior traits were also located. The significant QTL lies close to a previously identified mutation in the insulin-like growth factor 2 gene (IGF2) that affects carcass composition traits, although the IGF2 mutation is not segregating in the populations analyzed in the current study. Therefore, a distinct causal variant may exist on the P arm of SSC2 with an effect on feed intake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号