首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ubiquitous calcium regulating protein calmodulin (CaM) has been utilized as a model drug target in the design of a competitive binding fluorescence resonance energy transfer assay for pharmacological screening. The protein was labeled by covalently attaching the thiol-reactive fluorophore, N-[2-(1-maleimidyl)ethyl]-7-(diethylamino)coumarin-3-carboxamide (MDCC) to an engineered C-terminal cysteine residue. Binding of the environmentally sensitive hydrophobic probe 2,6-anilinonaphthalene sulfonate (2,6-ANS) to CaM could be monitored by an increase in the fluorescence emission intensity of the 2,6-ANS. Evidence of fluorescence resonance energy transfer (FRET) from 2,6-ANS (acting as a donor) to MDCC (the acceptor in this system) was also observed; fluorescence emission representative of MDCC could be seen after samples were excited at a wavelength specific for 2,6-ANS. The FRET signal was monitored as a function of the concentration of calmodulin antagonists in solution. Calibration curves for both a selection of small molecules and a series of peptides based upon known CaM-binding domains were obtained using this system. The assay demonstrated dose-dependent antagonism by analytes known to hinder the biological activity of CaM. These data indicate that the presence of molecules known to bind CaM interfere with the ability of FRET to occur, thus leading to a concentration-dependent decrease of the ratio of acceptor:donor fluorescence emission. This assay can serve as a general model for the development of other protein binding assays intended to screen for molecules with preferred binding activity.  相似文献   

2.
Fluorescence resonance energy transfer (FRET) detects the proximity of fluorescently labeled molecules over distances >100 A. When performed in a fluorescence microscope, FRET can be used to map protein-protein interactions in vivo. We here describe a FRET microscopy method that can be used to determine whether proteins that are colocalized at the level of light microscopy interact with one another. This method can be implemented using digital microscopy systems such as a confocal microscope or a wide-field fluorescence microscope coupled to a charge-coupled device (CCD) camera. It is readily applied to samples prepared with standard immunofluorescence techniques using antibodies labeled with fluorescent dyes that act as a donor and acceptor pair for FRET. Energy transfer efficiencies are quantified based on the release of quenching of donor fluorescence due to FRET, measured by comparing the intensity of donor fluorescence before and after complete photobleaching of the acceptor. As described, this method uses Cy3 and Cy5 as the donor and acceptor fluorophores, but can be adapted for other FRET pairs including cyan fluorescent protein and yellow fluorescent protein.  相似文献   

3.
Development of an ultrasensitive biosensor for biological hazards in the environment is a major need for pollutant control and for the detection of biological warfare. Fluorescence methods combined with immunodiagnostic methods are the most common. To minimize background noise, arising from the unspecific adsorption effect, we have adapted the FRET (frequency resonance energy transfer) effect to the immunofluorescence method. FRET will increase the selectivity of the diagnosis process by introducing a requirement for two different reporter molecules that have to label the antigen surface at a distance that will enable FRET. Utilizing the multiparameter capability of flow cytometry analysis to analyze the double-labeling/FRET immunostaining will lead to a highly selective and sensitive diagnostic method. This work examined the FRET interaction of fluorescence-labeled avidin molecules on biotin-coated microspheres as a model system. As target system, we have used labeled polyclonal antibodies on Bacillus anthracis spores. The antibodies used were purified immunoglobulin G (IgG) molecules raised in rabbits against B. anthracis exosoporium components. The antibodies were fluorescence labeled by a donor-acceptor chromophore pair, alexa488 as a donor and alexa594 as an acceptor. On labeling the spores with alexa488-IgG as a donor and alexa594-IgG as an acceptor, excitation at 488 nm results in quenching of the alexa-488 fluorescence (E(q) = 35%) and appearance of the alexa594 fluorescence (E(s) = 22%), as detected by flow cytometry analysis. The FRET effect leads to a further isolated gate (FL1/FL3) for the target spores compared to competitive spores such as B. thuringiensis subsp. israelensis and B. subtilis. This new approach, combining FRET labeling and flow cytometry analysis, improved the selectivity of the B. anthracis spores by a factor of 10 with respect to B. thuringiensis subsp. israelensis and a factor of 100 with respect to B. subtilis as control spores.  相似文献   

4.
A set of fluorescently-labeled DNA probes that hybridize with the target RNA and produce fluorescence resonance energy transfer (FRET) signals can be utilized for the detection of specific RNA. We have developed probe sets to detect and discriminate single-strand RNA molecules of plant viral genome, and sought a method to improve the FRET signals to handle in vivo applications. Consequently, we found that a double-labeled donor probe labeled with Bodipy dye yielded a remarkable increase in fluorescence intensity compared to a single-labeled donor probe used in an ordinary FRET. This double-labeled donor system can be easily applied to improve various FRET probes since the dependence upon sequence and label position in enhancement is not as strict. Furthermore this method could be applied to other nucleic acid substances, such as oligo RNA and phosphorothioate oligonucleotides (S-oligos) to enhance FRET signal. Although the double-labeled donor probes labeled with a variety of fluorophores had unexpected properties (strange UV-visible absorption spectra, decrease of intensity and decay of donor fluorescence) compared with single-labeled ones, they had no relation to FRET enhancement. This signal amplification mechanism cannot be explained simply based on our current results and knowledge of FRET. Yet it is possible to utilize this double-labeled donor system in various applications of FRET as a simple signal-enhancement method.  相似文献   

5.
Advances in molecular biology provide various methods to define the structure and function of the individual proteins that form the component parts of subcellular structures. The ability to see the dynamic behavior of a specific protein inside the living cell became possible through the application of advanced fluorescence resonance energy transfer (FRET) microscope techniques. The fluorophore molecule used for FRET imaging has a characteristic absorption and emission spectrum that should be considered for characterizing the FRET signal. In this article we describe the system development for the image acquisition for one- and two-photon excitation FRET microscopy. We also describe the precision FRET (PFRET) data analysis algorithm that we developed to remove spectral bleed-through and variation in the fluorophore expression level (or concentration) for the donor and acceptor molecules. The acquired images have been processed using a PFRET algorithm to calculate the energy transfer efficiency and the distance between donor and acceptor molecules. We implemented the software correction to study the organization of the apical endosome in epithelial polarized MDCK cells and dimerization of the CAATT/enhancer binding protein alpha (C/EBPalpha). For these proteins, the results revealed that the extent of correction affects the conventionally calculated energy transfer efficiency (E) and the distance (r) between donor and acceptor molecules by 38 and 9%, respectively.  相似文献   

6.
Imaging of fluorescence resonance energy transfer (FRET) between fluorescently labeled molecules can measure the timing and location of intermolecular interactions inside living cells. Present microscopic methods measure FRET in arbitrary units, and cannot discriminate FRET efficiency and the fractions of donor and acceptor in complex. Here we describe a stoichiometric method that uses three microscopic fluorescence images to measure FRET efficiency, the relative concentrations of donor and acceptor, and the fractions of donor and acceptor in complex in living cells. FRET stoichiometry derives from the concept that specific donor-acceptor complexes will give rise to a characteristic FRET efficiency, which, if measured, can allow stoichiometric discrimination of interacting components. A first equation determines FRET efficiency and the fraction of acceptor molecules in complex with donor. A second equation determines the fraction of donor molecules in complex by estimating the donor fluorescence lost due to energy transfer. This eliminates the need for acceptor photobleaching to determine total donor concentrations and allows for repeated measurements from the same cell. A third equation obtains the ratio of total acceptor to total donor molecules. The theory and method were confirmed by microscopic measurements of fluorescence from cyan fluorescent protein (CFP), citrine, and linked CFP-Citrine fusion protein, in solutions and inside cells. Together, the methods derived from these equations allow sensitive, rapid, and repeatable detection of donor-, acceptor-, and donor-acceptor complex stoichiometry at each pixel in an image. By accurately imaging molecular interactions, FRET stoichiometry opens new areas for quantitative study of intracellular molecular networks.  相似文献   

7.
Chelated lanthanides such as europium (Eu) have uniquely long fluorescence emission half-lives permitting their use in time-resolved fluorescence (TRF) assays. In Förster resonance energy transfer (FRET) a donor fluorophore transfers its emission energy to an acceptor fluorophore if in sufficiently close proximity. The use of time-resolved (TR) FRET minimizes the autofluorescence of molecules present in biological samples. In this report, we describe a homogenous immunoassay prototype utilizing TR-FRET for detection of antibodies in solution. The assay is based on labeled protein L, a bacterial protein that binds to immunoglobulin (Ig) light chain, and labeled antigen, which upon association with the same Ig molecule produce a TR-FRET active complex. We show that the approach is functional and can be utilized for both mono- and polyvalent antigens. We also compare the assay performance to that of another homogenous TR-FRET immunoassay reported earlier. This novel assay may have wide utility in infectious disease point-of-care diagnostics.  相似文献   

8.
Development of an ultrasensitive biosensor for biological hazards in the environment is a major need for pollutant control and for the detection of biological warfare. Fluorescence methods combined with immunodiagnostic methods are the most common. To minimize background noise, arising from the unspecific adsorption effect, we have adapted the FRET (frequency resonance energy transfer) effect to the immunofluorescence method. FRET will increase the selectivity of the diagnosis process by introducing a requirement for two different reporter molecules that have to label the antigen surface at a distance that will enable FRET. Utilizing the multiparameter capability of flow cytometry analysis to analyze the double-labeling/FRET immunostaining will lead to a highly selective and sensitive diagnostic method. This work examined the FRET interaction of fluorescence-labeled avidin molecules on biotin-coated microspheres as a model system. As target system, we have used labeled polyclonal antibodies on Bacillus anthracis spores. The antibodies used were purified immunoglobulin G (IgG) molecules raised in rabbits against B. anthracis exosoporium components. The antibodies were fluorescence labeled by a donor-acceptor chromophore pair, alexa488 as a donor and alexa594 as an acceptor. On labeling the spores with alexa488-IgG as a donor and alexa594-IgG as an acceptor, excitation at 488 nm results in quenching of the alexa-488 fluorescence (Eq = 35%) and appearance of the alexa594 fluorescence (Es = 22%), as detected by flow cytometry analysis. The FRET effect leads to a further isolated gate (FL1/FL3) for the target spores compared to competitive spores such as B. thuringiensis subsp. israelensis and B. subtilis. This new approach, combining FRET labeling and flow cytometry analysis, improved the selectivity of the B. anthracis spores by a factor of 10 with respect to B. thuringiensis subsp. israelensis and a factor of 100 with respect to B. subtilis as control spores.  相似文献   

9.
A new baculovirus-based fluorescence resonance energy transfer (Bv-FRET) assay for measuring multimerization of cell surface molecules in living cells is described. It has been demonstrated that gonadotropin-releasing hormone receptor (GnRH-R) was capable of forming oligomeric complexes in the plasma membrane under normal physiological conditions. The mouse gonadotropin-releasing hormone receptor GnRH-R was used to evaluate the efficiency and potential applications of this assay. Two chimeric constructs of GnRH-R were made, one with green fluorescent protein as a donor fluorophore and the other with enhanced yellow fluorescent protein as an acceptor fluorophore. These chimeric constructs were coexpressed in an insect cell line (BTI Tn5 B1-4) using recombinant baculoviruses. Energy transfer occurred from the excited donor to the acceptor when they were in close proximity. The association of GnRH-R was demonstrated through FRET and the fluorescence observed using a Leica TSC-SPII confocal microscope. FRET was enhanced by the addition of a GnRH agonist but not by an antagonist. The Bv-FRET assay constitutes a highly efficient, reliable and convenient method for measuring protein-protein interaction as the baculovirus expression system is superior to other transfection-based methods. Additionally, the same insect cell line can be used routinely for expressing any recombinant proteins of interest, allowing various combinations of molecules to be tested in a rapid fashion for protein-protein interactions. The assay is a valuable tool not only for the screening of new molecules that interact with known bait molecules, but also for confirming interactions between other known molecules.  相似文献   

10.
We have carried out fluorescence resonance energy transfer (FRET) measurements on four-way DNA junctions in order to analyze the global structure and its dependence on the concentration of several types of ions. A knowledge of the structure and its sensitivity to the solution environment is important for a full understanding of recombination events in DNA. The stereochemical arrangement of the four DNA helices that make up the four-way junction was established by a global comparison of the efficiency of FRET between donor and acceptor molecules attached pairwise in all possible permutations to the 5' termini of the duplex arms of the four-way structure. The conclusions are based upon a comparison between a series of many identical DNA molecules which have been labeled on different positions, rather than a determination of a few absolute distances. Details of the FRET analysis are presented; features of the analysis with particular relevance to DNA structures are emphasized. Three methods were employed to determine the efficiency of FRET: (1) enhancement of the acceptor fluorescence, (2) decrease of the donor quantum yield, and (3) shortening of the donor fluorescence lifetime. The FRET results indicate that the arms of the four-way junction are arranged in an antiparallel stacked X-structure when salt is added to the solution. The ion-related conformational change upon addition of salt to a solution originally at low ionic strength progresses in a continuous noncooperative manner as the ionic strength of the solution increases. The mode of ion interaction at the strand exchange site of the junction is discussed.  相似文献   

11.
@Chromatin nanoscale architecture in live cells can be studied by Förster resonance energy transfer (FRET) between fluorescently labeled chromatin components, such as histones. A higher degree of nanoscale compaction is detected as a higher FRET level, since this corresponds to a higher degree of proximity between donor and acceptor molecules. However, in such a system, the stoichiometry of the donors and acceptors engaged in the FRET process is not well defined and, in principle, FRET variations could be caused by variations in the acceptor‐to‐donor ratio rather than distance. Here, to get a FRET level independent of the acceptor‐to‐donor ratio, we combine fluorescence lifetime imaging detection of FRET with a normalization of the FRET level to a pixel‐wise estimation of the acceptor‐to‐donor ratio. We use this method to study FRET between two DNA binding dyes staining the nuclei of live cells. We show that this acceptor‐to‐donor ratio corrected FRET imaging reveals variations of nanoscale compaction in different chromatin environments. As an application, we monitor the rearrangement of chromatin in response to laser‐induced microirradiation and reveal that DNA is rapidly decompacted, at the nanoscale, in response to DNA damage induction.   相似文献   

12.
V S Malinin  M E Haque  B R Lentz 《Biochemistry》2001,40(28):8292-8299
A number of fluorescent probes have been used to follow membrane fusion events, particularly intermixing of lipids. None of them is ideal. The most popular pair of probes is NBD-PE and Rh-PE, in which the fluorescent groups are attached to the lipid headgroups, making them sensitive to changes in the surrounding medium. Here we present a new assay for monitoring lipid transfer during membrane fusion using the acyl chain tagged fluorescent probes BODIPY500-PC and BODIPY530-PE. Like the NBD-PE/Rh-PE assay, this assay is based on fluorescence resonance energy transfer (FRET) between the donor, BODIPY500, and the acceptor, BODIPY530. The magnitude of FRET is sensitive to the probe surface concentration, allowing one to detect movement of probes from labeled to unlabeled vesicles during fusion. The high quantum yield of fluorescence, high efficiency of FRET (R(o) is estimated to be approximately 60 A), photostability, and localization in the central hydrophobic region of a bilayer all make this pair of probes quite promising for detecting fusion. We have compared this and two other lipid mixing assays for their abilities to detect the initial events of poly(ethylene glycol) (PEG)-mediated fusion of small unilamellar vesicles (SUVs). We found that the BODIPY500/530 assay showed lipid transfer rates consistent with those obtained using the DPHpPC self-quenching assay, while lipid mixing rates measured with the NBD-PE/Rh-PE RET assay were significantly slower. We speculate that the bulky labeled headgroups of NBD-PE and especially Rh-PE molecules hamper movement of probes through the stalk between fusing vesicles, and thus reduce the apparent rate of lipid mixing.  相似文献   

13.
As a component of the (strept)avidin affinity system, biotin is often covalently linked to proteins or nucleic acids. We describe here a microplate-based high-throughput fluorometric assay for biotin linked to either proteins or nucleic acids based on fluorescence resonance energy transfer (FRET). This assay utilizes a complex of Alexa Fluoro 488 dye-labeled avidin with a quencher dye, 2-(4'-hydroxyazobenzene) benzoic acid (HABA), occupying the biotin binding sites of the avidin. In the absence of biotin, HABA quenches the fluorescence emission of the Alexa Fluor 488 dyes via FRET HABA is displaced when biotin binds to the Alexa Fluor 488 dye-labeled avidin, resulting in decreased FRET efficiency. This mechanism results in an increase in fluorescence intensity directly related to the amount of biotin present in the sample. The assay is able to detect as little as 4 pmol biotin in a 0.1 mL volume within 15 min of adding sample to the reagent, with a Z-factor > 0.9.  相似文献   

14.
G-protein-coupled receptors transduce their signals through G-protein subunits which in turn are subject to modulation by other intracellular proteins such as the regulators of G-protein signaling (RGS) proteins. We have developed a cell-free, homogeneous (mix and read format), time-resolved fluorescence resonance energy transfer (TR-FRET) assay to monitor heterotrimeric G-protein subunit interactions and the interaction of the G alpha subunit with RGS4. The assay uses a FRET pair consisting of a terbium cryptate chelate donor spectrally matched to an Alexa546 fluor acceptor, each of which is conjugated to separate protein binding partners, these being G alpha(i1):beta4gamma2 or G alpha(i1):RGS4. Under conditions favoring specific binding between labeled partners, high-affinity interactions were observed as a rapid increase (>fivefold) in the FRET signal. The specificity of these interactions was demonstrated using denaturing or competitive conditions which caused significant reductions in fluorescence (50-85%) indicating that labeled proteins were no longer in close proximity. We also report differential binding effects as a result of altered activation state of the G alpha(i1) protein. This assay confirms that interactions between G-protein subunits and RGS4 can be measured using TR-FRET in a cell- and receptor-free environment.  相似文献   

15.
The fluorescence properties of a monolayer of labeled avidin molecules were studied near silver island films. We first adsorbed a monolayer of biotinylated-BSA as a base that was used to capture labeled avidin molecules. For labeled avidin on silver island films, we observed an increase of the fluorescence intensity of between 18 and 80 with one-photon excitation and up to several hundredfold or larger with two-photon excitation. The probes were moderately more photostable in the presence of silver islands. There was also a dramatic decrease in the lifetimes with the amplitude-weighted values decreasing from 7- to 35-fold. The data suggest that these spectral changes are due to both increased rates of excitation near the metallic particles and increases in the rates of radiative decay. Because these silver island surfaces are very heterogeneous, we are hopeful that larger increases in intensity and photostability can be obtained for probes situated at an optimal distance from the ideal island surfaces.  相似文献   

16.
Fluorescence resonance energy transfer (FRET) between fluorescent proteins (FPs) is a powerful method to visualize and quantify protein-protein interaction in living cells. Unfortunately, the emission bleed-through of FPs limits the usage of this complex technique. To circumvent undesirable excitation of the acceptor fluorophore, using two-photon excitation, we searched for FRET pairs that show selective excitation of the donor but not of the acceptor fluorescent molecule. We found this property in the fluorescent cyan fluorescent protein (CFP)/yellow fluorescent protein (YFP) and YFP/mCherry FRET pairs and performed two-photon excited FRET spectral imaging to quantify protein interactions on the later pair that shows better spectral discrimination. Applying non-negative matrix factorization to unmix two-photon excited spectral imaging data, we were able to eliminate the donor bleed-through as well as the autofluorescence. As a result, we achieved FRET quantification by means of a single spectral acquisition, making the FRET approach not only easy and straightforward but also less prone to calculation artifacts. As an application of our approach, the intermolecular interaction of amyloid precursor protein and the adaptor protein Fe65 associated with Alzheimer's disease was quantified. We believe that the FRET approach using two-photon and fluorescent YFP/mCherry pair is a promising method to monitor protein interaction in living cells.  相似文献   

17.
Protein localization in living cells and tissues using FRET and FLIM   总被引:8,自引:0,他引:8  
Interacting proteins assemble into molecular machines that control cellular homeostasis in living cells. While the in vitro screening methods have the advantage of providing direct access to the genetic information encoding unknown protein partners, they do not allow direct access to interactions of these protein partners in their natural environment inside the living cell. Using wide-field, confocal, or two-photon (2p) fluorescence resonance energy transfer (FRET) microscopy, this information can be obtained from living cells and tissues with nanometer resolution. One of the important conditions for FRET to occur is the overlap of the emission spectrum of the donor with the absorption spectrum of the acceptor. As a result of spectral overlap, the FRET signal is always contaminated by donor emission into the acceptor channel and by the excitation of acceptor molecules by the donor excitation wavelength. Mathematical algorithms are required to correct the spectral bleed-through signal in wide-field, confocal, and two-photon FRET microscopy. In contrast, spectral bleed-through is not an issue in FRET/FLIM imaging because only the donor fluorophore lifetime is measured; also, fluorescence lifetime imaging microscopy (FLIM) measurements are independent of excitation intensity or fluorophore concentration. The combination of FRET and FLIM provides high spatial (nanometer) and temporal (nanosecond) resolution when compared to intensity-based FRET imaging. In this paper, we describe various FRET microscopy techniques and its application to protein-protein interactions.  相似文献   

18.
The four-way DNA (Holliday) junction is an important postulated intermediate in the process of genetic recombination. Earlier studies have suggested that the junction exists in two alternative conformations, depending upon the salt concentration present. At high salt concentrations the junction folds into a stacked X structure, while at low salt concentrations the data indicate an extended unstacked conformation. The stereochemical conformation of the four-way DNA junction at low salt (low alkali ion concentration and no alkaline earth ions) was established by comparing the efficiency of fluorescence resonance energy transfer (FRET) between donor and acceptor molecules attached pairwise in three permutations to the 5' termini of the duplex arms. A new variation of FRET was implemented based upon a systematic variation of the fraction of donor labeled single strands. The FRET results indicate that the structure of the four-way DNA junction at low salt exists as an unstacked, extended, square arrangement of the four duplex arms. The donor titration measurements made in the presence of magnesium ions clearly show the folding of the junction into the X stacked structure. In addition, the FRET efficiency can be measured. The fluorescence anisotropy of the acceptor in the presence of Mg2+ during donor titrations was also measured; the FRET efficiency can be calculated from the anisotropy data and the results are consistent with the folded, stacked X structure.  相似文献   

19.
We report on a novel technique to develop an optical immunosensor based on fluorescence resonance energy transfer (FRET). IgG antibodies were labeled with acceptor fluorophores while one of three carrier molecules (protein A, protein G, or F(ab')2 fragment) was labeled with donor fluorophores. The carrier molecule was incubated with the antibody to allow specific binding to the Fc portion. The labeled antibody-protein complex was then exposed to specific and nonspecific antigens, and experiments were designed to determine the 'in solution' response. The paper reports the results of three different donor-acceptor FRET pairs, fluorescein isothiocyanate/tetramethylrhodamine isothiocyanate, Texas Red/Cy5, and Alexa Fluor 546/Alexa Fluor 594. The effects of the fluorophore to protein conjugation ratio (F/P ratio) and acceptor to donor fluorophore ratios between the antibody and protein (A/D ratio) were examined. In the presence of specific antigens, the antibodies underwent a conformational change, resulting in an energy transfer from the donor to the acceptor fluorophore as measured by a change in fluorescence. The non-specific antigens elicited little or no changes. The Alexa Fluor FRET pair demonstrated the largest change in fluorescence, resulting in a 35% change. The F/P and A/D ratio will affect the efficiency of energy transfer, but there exists a suitable range of A/D and F/P ratios for the FRET pairs. The feasibility of the FRET immunosensor technique was established; however, it will be necessary to immobilize the complexes onto optical substrates so that consistent trends can be obtained that would allow calibration plots.  相似文献   

20.
The stability in physiological medium of polyplex- and lipoplex-type nonviral gene vectors was evaluated by detecting the conformational change of complexed plasmid DNA (pDNA) labeled simultaneously with fluorescein (energy donor) and X-rhodamine (energy acceptor) through fluorescence resonance energy transfer (FRET). Upon mixing with cationic components, such as LipofectAMINE, poly(L-lysine), and poly(ethylene glycol)-poly(L-lysine) block copolymer (PEG-PLys), the fluorescence spectrum of doubly labeled pDNA underwent a drastic change due to the occurrence of FRET between the donor-acceptor pair on pDNA taking a globular conformation (condensed state) through complexation. The measurement was carried out also in the presence of 20% serum, under which conditions FRET from condensed pDNA was clearly monitored without interference from coexisting components in the medium, allowing evaluation of the condensed state of pDNA in nonviral gene vectors under physiological conditions. Serum addition immediately induced a sharp decrease in FRET for the LipofectAMINE/pDNA (lipoplex) system, which was consistent with the sharp decrease in the transfection efficiency of the lipoplex system in serum-containing medium. In contrast, the PEG-PLys/pDNA polyplex (polyion complex micelle) system maintained appreciable transfection efficiency even in serum-containing medium, and FRET efficiency remained constant for up to 12 h, indicating the high stability of the polyion complex micelle under physiological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号