首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
beta 1-Bungarotoxin has only one tryptophan residue, namely Trp-19 in the phospholipase A2 subunit. The environment of Trp-19 was studied by intrinsic fluorescence and solute quenching. The native protein showed an emission peak at 330 nm. About 90% of the fluorescent tryptophan was accessible to quenching by either acrylamide or KI but not to CsCl. A red-shift in the emission peak occurred between 2.0 M- and 4.0 M-guanidinium chloride, and the helix-coil transition of the polypeptide backbone occurred between 4.0 M- and 6.0 M-guanidinium chloride. These results suggested that Trp-19 was in a less polar medium but near a positive charge. The local conformation around Trp-19 could be disturbed by binding of Tb3+ or Ca2+ or Sr2+ to the toxin molecule. Tb3+ a tervalent lanthanide ion, effectively substituted for Ca2+ in stimulating the phospholipase A2 activity of beta 1-bungarotoxin. Upon the binding of Tb3+ to the toxin, the Tb3+ fluorescence in the 450-650 nm region was enhanced. This resulted from the energy transfer from Trp-19 to Tb3+. The distance between the energy-transfer pair was estimated to be 0.376-0.473 nm at pH 7.6 and 0.486-0.609 nm at pH 6.3. Assuming that there were two Tb3+-binding sites on the toxin molecule, at pH 7.6 the association constants of the high-affinity and the low-affinity sites were determined to be 3.82 x 10(3) M-1 and 2.85 x 10(2) M-1 respectively. At between pH 6.0 and 7.0 Tb3+ bound to the high-affinity site decreased greatly but did not disappear entirely. Both Ca2+ and Sr2+ competed with Tb3+ at the high-affinity sites, but Sr2+ could not substitute for Ca2+ in stimulating the phospholipase A2 activity.  相似文献   

2.
Several metmyoglobins (red kangaroo, horse and sperm whale), containing different numbers of tyrosines, but with invariant tryptophan residues (Trp-7, Trp-14), exhibit intrinsic fluorescence when studied by steady-state front-face fluorometry. The increasing tyrosine content of these myoglobins correlates with a shift in emission maximum to shorter wavelengths with excitation at 280 nm: red kangaroo (Tyr-146) emission maximum 335 nm; horse (Tyr-103, -146) emission maximum 333 nm; sperm whale (Tyr-103, -146, -151) emission maximum 331 nm. Since 280 nm excites both tyrosine and tryptophan, this strongly suggests that tyrosine emission is not completely quenched but also contributes to this fluorescence emission. Upon titration to pH 12.5, there is a reversible shift of the emission maximum to longer wavelengths with an increase greater than 2-fold in fluorescence intensity. With excitation at 305 nm, a tyrosinate-like emission is detected at a pH greater than 12. These studies show that: (1) metmyoglobins, Class B proteins containing both tyrosine and tryptophan residues, exhibit intrinsic fluorescence; (2) tyrosine residues also contribute to the observed steady-state fluorescence emission when excited by light at 280 nm; (3) the ionization of Tyr-146 is likely coupled to protein unfolding.  相似文献   

3.
4.
Time-resolved, steady-state fluorescence and fluorescence-detected circular dichroism (FDCD) have been used to resolve the fluorescence contributions of the two tryptophan residues, Trp-13 and Trp-85, in the cyclic AMP receptor protein (CRP). The iodide and acrylamide quenching data show that in CRP one tryptophan residue, Trp-85, is buried within the protein matrix and the other, Trp-13, is moderately exposed on the surface of the protein. Fluorescence-quenching-resolved spectra show that Trp-13 has emission at about 350 nm and contributes 76–83% to the total fluorescence emission. The Trp-85, unquenchable by iodide and acrylamide, has the fluorescence emission at about 337 nm. The time-resolved fluorescence measurements show that Trp-13 has a longer fluorescence decay time. The Trp-85 exhibits a shorter fluorescence decay time. In the CRP-cAMP complex the Trp-85, previously buried in the apoprotein becomes totally exposed to the iodide and acrylamide quenchers. The FDCD spectra indicate that in the CRP-cAMP complex Trp-85 remains in the same environment as in the protein alone. It has been proposed that the binding of cAMP to CRP is accompanied by a hinge reorientation of two protein domains. This allows for penetration of the quencher molecules into the Trp-85 residue previously buried in the protein matrix.  相似文献   

5.
Weng J  Tan C  Shen JR  Yu Y  Zeng X  Xu C  Ruan K 《Biochemistry》2004,43(16):4855-4861
In this paper, we analyzed the pH-induced changes in the conformational states of the manganese-stabilizing protein (MSP) of photosystem II. Distinct conformational states of MSP were identified using fluorescence spectra, far-UV circular dichroism, and pressure-induced unfolding at varying suspension pH values, and four different conformational states of MSP were clearly distinguished using the center of fluorescence spectra mass when suspension pH was altered from 2 to 12. MSP was completely unfolded at a suspension pH above 11 and partly unfolded below a pH of 3. Analysis of the center of fluorescence spectral mass showed that the MSP structure appears stably folded around pH 6 and 4. The conformational state of MSP at pH 4 seems more stable than that at pH 6. Studies of peak positions of tryptophan fluorescence and MSP-bound 1-anilinonaphthalene-8-sulfonic acid fluorescence spectra supported this observation. A decrease in the suspension pH to 2 resulted in significant alterations in the MSP structure possibly because of protonation of unprotonated residues at lower pH, suggesting the existence of a large number of unprotonated amino acid residues at neutral pH possibly useful for proton transport in oxygen evolution. The acidic pH-induced conformational changes of MSP were reversible upon increase of pH to neutral pH; however, N-bromosuccinimide modification of tryptophan (Trp241) blocks the recovery of pH-induced conformational changes in MSP, implying that Trp241 is a key residue for the unfolded protein to form a functional structure. Thus, pH-induced structural changes of stable MSP (pH 6-4) may be utilized to analyze its functionality as a cofactor for oxygen evolution.  相似文献   

6.
pH-induced conformational states of bovine growth hormone   总被引:1,自引:0,他引:1  
The folding behavior of bovine growth hormone (bGH) is examined by chemical and pH denaturation using several spectroscopic probes of protein secondary and tertiary structure. Partially denaturing concentrations of urea eliminate the native-state quenching of intrinsic tryptophan fluorescence, from the single protein tryptophan, but the fluorescence emission spectrum is not red-shifted like the unfolded state, and the protein retains substantial secondary structure. A neutral-to-acid pH shift also eliminates tryptophan quenching; however, the loss of quenching is not accompanied by an emission red-shift. In addition, the protein undergoes a pH-dependent UV absorbance transition; the changes in absorptivity have the same midpoint as the transition associated with the change in intrinsic tryptophan fluorescence. The magnitude of the absorption transition is similar to that observed previously for urea denaturation of the protein. In a similar fashion, a pH-dependent CD transition is also observed; however, the transition occurs at a higher pH. The behavior of the various optical probes indicates that the pH-induced conformational transition produces a highly populated species in which the microenvironment surrounding the single protein tryptophan residue resembles that observed during the urea-induced unfolding/refolding transition. The pH-induced changes in tertiary structure occur at a lower pH than the changes associated with a portion of the secondary structure. Proton NMR of the low-pH intermediate indicates that the three His and six Tyr resonances are indistinguishable from the unfolded state. The intermediate(s) observed by either chemical or pH-induced denaturation resemble(s) a molten globule state which contains significant secondary structure. The residual secondary structure present in the intermediate could be nonnative.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The fluorescence properties of proteinase K are described and related to the X-ray model refined at 1.48 A resolution. Upon excitation of proteinase K at 295 nm the fluorescence is determined by the two tryptophan residues, Trp-8 and Trp-212. The tryptophans are partly buried just below the surface of the molecule. Neither Trp is in a highly hydrophobic environment, suggesting that this cannot be the explanation for the fluorescence at 330 nm: formation of exiplexes with adjacent peptide bonds would seem to be the more likely cause. Trp-8 is located in a 'cavity', close to an internal cluster of water molecules. The contribution of Trp-8 to the total indole emission is 60% and that of Trp-212 is 40%. The tryptophan fluorescence quantum yield is constant in the pH range 3-9. The fluorescence spectrum resulting from the simultaneous excitation of the tyrosyl and tryptophyl residues at 280 nm is dominated by the indole fluorophores: 61% of the light absorbed by the tyrosyl side chains is transferred to the two indole rings. Iodide and caesium are not efficient quenchers of the proteinase K tryptophan fluorescence, which is explained by restricted access of the ions to the somewhat buried Trp side chains and by electrostatic repulsion of caesium ions. Acrylamide quenching proceeds via both a dynamic and a static process and the data show homogeneity of the indole fluorescence arising from fluorophores in similar environments. The activation energy for the thermal deactivation of the excited tryptophans is 54 kJ mol-1. This value is substantially higher than those found for other proteinases from microorganisms and arises from the thermostability of proteinase K. Photooxidation of proteinase K in the presence of proflavine follows the kinetics of a first order reaction. The two tryptophans differ in their photoreactivity, Trp-212 being considerably more reactive.  相似文献   

8.
Mutants of the Tn10-encoded Tet repressor containing single or no tryptophan residues were constructed by oligonucleotide-directed mutagenesis. The Trp-75 to Phe exchange reduces the dissociation rate of the complex with the inducer tetracycline by a factor of 2. The Trp-43 to Phe exchange has no effect on inducer binding. The fluorescence emission spectra of both tryptophan residues are quenched to a different extent by binding of tetracycline: Trp-75 is quenched to zero and Trp-43 to only 50%. It is concluded that Trp-75 is in the vicinity of the inducer binding site. The different fluorescence emission spectra of both tryptophan residues depend on the native structure of Tet repressor. Quenching studies with iodide indicate that the DNA binding motif is solvent exposed in free repressor and moves towards the interior of the protein upon inducer binding. The inducer binding site is in the interior of the protein. The fluorescence of tetracycline is enhanced upon binding to Tet repressor. The excitation at 280 nm results mainly from the change in environment and in part from energy transfer from tryptophan to the drug.  相似文献   

9.
pH-dependent bilayer destabilization by an amphipathic peptide   总被引:7,自引:0,他引:7  
A 30-residue amphipathic peptide was designed to interact with uncharged bilayers in a pH-dependent fashion. This was achieved by a pH-induced random coil-alpha-helical transition, exposing a hydrophobic face in the peptide. The repeat unit of the peptide, glutamic acid-alanine-leucine-alanine (GALA), positioned glutamic acid residues on the same face of the helix, and at pH 7.5, charge repulsion between aligned Glu destabilized the helix. A tryptophan was included at the N-terminal as a fluorescence probe. The rate and extent of peptide-induced leakage of contents from large, unilamellar vesicles composed of egg phosphatidylcholine were dependent on pH. At pH 5.0 with a lipid/peptide mole ratio of 500/1, 100% leakage of vesicle contents occurred within 1 min. However, no leakage of vesicle contents occurred at pH 7.5. Circular dichroism measurements indicated that the molar ellipticity at 222 nm changed from about -4000 deg cm2 dmol-1 at pH 7.6 to -11,500 deg cm2 dmol-1 at pH 5.1, indicating a substantial increase in helical content as the pH was reduced. Changes in molar ellipticity were most significant over the same pH range where a maximum change in the extent and rate of leakage occurred. The tryptophan fluorescence emission spectra and the circular dichroism spectra of the peptide, in the presence of lipid, suggest that GALA did not associate with the bilayer at neutral pH. A change in the circular dichroism spectrum and a blue shift of the maximum of the tryptophan fluorescence emission spectra at pH 5.0, in the presence of lipid, indicated an association of GALA with the bilayer.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Peptide-induced conformational changes in five isofunctional mutants of calmodulin (CaM), each bearing a single tryptophan residue either at the seventh position of each of the four calcium-binding loops (i.e., amino acids 26, 62, 99, and 135) or in the central helix (amino acid 81) were studied by using fluorescence spectroscopy. The peptides RS20F and RS20CK correspond to CaM-binding amino acid sequence segments of either nonmuscle myosin light chain kinase (nmMLCK) or calmodulin-dependent protein kinase II (CaMPK-II), respectively. Both steady-state and time-resolved fluorescence data were collected from the various peptide-CaM complexes. Steady-state fluorescence intensity measurements indicated that, in the presence of an excess of calcium, both peptides bind to the calmodulin mutants with a 1:1 stoichiometry. The tryptophans located in loops I and IV exhibited red-shifted emission maxima (356 nm), high quantum yields (0.3), and long average lifetimes (6 ns). They responded in a similar manner to peptide binding, by only slight changes in their fluorescence features. In contrast, the fluorescence intensity of the tryptophans in loops II and III decreased markedly, and their fluorescence spectrum was blue-shifted upon peptide binding. Analysis of the tryptophan fluorescence decay of the last mentioned calmodulins supports a model in which the equilibrium between two (Trp-99) or three (Trp-62) states of these tryptophan residues, each characterized by a different lifetime, was altered toward the blue-shifted short lifetime component upon peptide binding. Taken together, these data provide new evidence that both lobes of calmodulin are involved in peptide binding. Both peptides induced similar changes in the fluorescence properties of the tryptophan residues located in the calcium-binding loops, with the exception of calmodulin with Trp-135. For this last mentioned calmodulin, slight differences were observed. Tryptophan in the central helix responded differently to RS20F and RS20CK binding. RS20F binding induced a red-shift in the emission maximum of Trp-81 while RS20CK induced a blue-shift. The quenching rate of Trp-81 by iodide was slightly reduced upon RS20CK binding, while RS20F induced a 2-fold increase. These results provide evidence that the environment of Trp-81 is different in each case and are, therefore, consistent with the hypothesis that the central helix can play a differential role in the recognition of, or response to, CaM-binding structures.  相似文献   

11.
The emission spectrum of intact purple membranes of Halobacterium halobium has a very short wavelength position (the main maximum at 314 nm) and can be fitted by two spectral components, one of which (component A) corresponds to the fluorescence of buried tryptophan residues located in a highly hydrophobic rigid environment (like the single tryptophan residue in azurin), the other (component I) being due to the emission of buried tryptophan residues located in a rather polar environment. Treatment of bacteriorhodopsin by NaBH4, fragmentation of the membranes and thermal formation of vesicles result in a decrease in the contribution of component A, an increase in that of component I and the appearance of spectral components corresponding to the emission of surface tryptophan residues. Temperature induces at least two distinct changes of the fluorescence parameters of the protein: one change occurs from 45 to 65 degrees C. the other from 65 to 90 degrees C. The spectral changes correlate with the peaks of heat sorption caused by thermal transitions in the purple membrane structure and conformational changes in the protein structure. Alkaline denaturation of bacteriorhodopsin registered by tryptophan fluorescence begins at pH > 11.0.  相似文献   

12.
Time-resolved, steady-state fluorescence and fluorescence-detected circular dichroism (FDCD) have been used to resolve the fluorescence contributions of the two tryptophan residues, Trp-13 and Trp-85, in the cyclic AMP receptor protein (CRP). The iodide and acrylamide quenching data show that in CRP one tryptophan residue, Trp-85, is buried within the protein matrix and the other, Trp-13, is moderately exposed on the surface of the protein. Fluorescence-quenching-resolved spectra show that Trp-13 has emission at about 350 nm and contributes 76–83% to the total fluorescence emission. The Trp-85, unquenchable by iodide and acrylamide, has the fluorescence emission at about 337 nm. The time-resolved fluorescence measurements show that Trp-13 has a longer fluorescence decay time. The Trp-85 exhibits a shorter fluorescence decay time. In the CRP-cAMP complex the Trp-85, previously buried in the apoprotein becomes totally exposed to the iodide and acrylamide quenchers. The FDCD spectra indicate that in the CRP-cAMP complex Trp-85 remains in the same environment as in the protein alone. It has been proposed that the binding of cAMP to CRP is accompanied by a hinge reorientation of two protein domains. This allows for penetration of the quencher molecules into the Trp-85 residue previously buried in the protein matrix.Abbreviations CRP cyclic AMP receptor protein - NATA N-acetyltryptophanamide - FQRS fluorescence-quenching-resolved spectra - FDCD fluorescence-detected circular dichroism - EDTA ethylenediaminetetraacetic acid - SDS sodium dodecyl sulfate - FPLC fast protein liquid chromatography  相似文献   

13.
Quenching of tryptophan fluorescence of Luciola mingrelica (single tryptophan residue, Trp-419) and Photinus pyralis (two tryptophan residues, Trp-417 and Trp-426) luciferases with different quenchers (I-, Cs+, acrylamide) was studied. The conserved Trp-417(419) residue was shown to be not accessible to charged particles, and positively and negatively charged amino acid residues are located in close vicinity to it. We found previously unreported effective energy transfer from this tryptophan to luciferin during the quenching of the tryptophan fluorescence. The distance between the luciferin molecule and Trp-417(419) was calculated: 11-15 and 12-17 A for P. pyralis and L. mingrelica luciferases, respectively. The role of the conserved Trp residue in the catalysis is discussed. ATP and AMP are also quenchers of the tryptophan fluorescence of the luciferases. In this case, an allosteric mechanism of the interaction of Trp-417(419) with an excess of ATP (AMP) is proposed.  相似文献   

14.
A frequency domain fluorescence study of yeast phosphoglycerate kinase has been performed to observe the effect of substrates on the structure and dynamics of the enzyme. At 20 degrees C and pH 7.2, a biexponential decay is observed for tryptophanyl emission. The short fluorescence lifetime (0.4 ns) component is associated with a spectrum having a 329-nm maximum and a 18.4-kJ/mol activation energy, Ea, for thermal quenching. The long-lifetime (3.5 ns) component has a 338-nm maximum and an Ea of only 7.9 kJ/mol. Tentatively we assign the short and long-lifetime components to Trp-333 and Trp-308. Binding of the substrates ATP and 3-phosphoglycerate leads to a significant increase in the fluorescence lifetime, the red shift of the emission spectrum and in the decrease in the Ea for both components. Acrylamide-quenching studies indicate that the two tryptophan residues have about the same degree of kinetic exposure to the quencher and that the binding of the substrates causes a very slight change in the quenching pattern. These fluorescence studies indicate that the binding of the substrates to phosphoglycerate kinase may influence the conformational dynamics around the two tryptophan residues located on one of the protein's domains.  相似文献   

15.
The intrinsic fluorescence of the exonuclease isolated from Crotalus adamanteus venom, was studied. The position of its maximum at 335 nm and half-width of the emission band 55 nm (lambda exc. 295 nm) suggested the existence of at least two types of tryptophan residues in the enzyme molecule. Differential analysis of the fluorescence spectra obtained by excitation at 280 and 295 nm revealed about 12.5% contribution of the tyrosine fluorescence in the overall emission excited at 280 nm. The environment of the tryptophan residues in the exonuclease was studied by quenching of their fluorescence with various ionic (NO3-, NO2-, I-, Br- and Cs+) and non-ionic agents (acrylamide, chloroform-methanol). On this basis, fractions of inner (non-polar) and surface tryptophan residues located in charged and neutral regions of the enzyme molecule were evaluated. More than half of the residues (60%) was found in the inner part of the exonuclease while most of its surface tryptophans--in a neutral region(s).  相似文献   

16.
G Desie  N Boens  F C De Schryver 《Biochemistry》1986,25(25):8301-8308
The tryptophan environments in crystalline alpha-chymotrypsin were investigated by fluorescence. The heterogeneous emission from this multitryptophan enzyme was resolved by time-correlated fluorescence spectroscopy. The fluorescence decays at 296-nm laser excitation and various emission wavelengths could be characterized by a triple-exponential function with decay times tau 1 = 150 +/- 50 ps, tau 2 = 1.45 +/- 0.25 ns, and tau 3 = 4.2 +/- 0.4 ns. The corresponding decay-associated emission spectra of the three components had maxima at about 325, 332, and 343 nm. The three decay components in this enzyme can be correlated with X-ray crystallographic data [Birktoft, J.J., & Blow, D.M. (1972) J. Mol. Biol. 68, 187-240]. Inter- and intramolecular tryptophan-tryptophan energy-transfer efficiencies in crystalline alpha-chymotrypsin were computed from the accurately known positions and orientations of all tryptophan residues. These calculations indicate that the three fluorescence decay components in crystalline alpha-chymotrypsin can be assigned to three distinct classes of tryptophyl residues. Because of the different proximity of tryptophan residues to neighboring internal quenching groups, the decay times of the three classes are different. Decay tau 1 can be assigned to Trp-172 and Trp-215 and tau 2 to Trp-51 and Trp-237, while the tryptophyl residues 27, 29, 141, and 207 all have decay time tau 3.  相似文献   

17.
The two forms of chicken cystatin, with different isoelectric points, that have been described previously were indistinguishable in analyses of amino- and carboxy-terminal residues, amino acid composition, and peptide maps. The two forms thus are highly similar and most likely differ only in an amide group or in a small charged substituent. The binding of either cystatin form to highly purified, active papain was accompanied by the same pronounced changes in near-ultraviolet circular dichroism, ultraviolet absorption, and fluorescence emission. These changes were compatible with perturbations of the environment of aromatic residues in one or both proteins of the complex, arising from local interactions or from a conformational change. Modification of the single tryptophan residue of cystatin, at position 104, with N-bromosuccinimide resulted in considerably smaller spectroscopic changes on binding of the inhibitor to papain, indicating that the environment of this residue is affected by the binding. Analogous modification of Trp-69 and Trp-177 of papain markedly affected the fluorescence changes observed on binding of cystatin to the enzyme, similarly suggesting that these two residues of papain are involved in the interaction. The fluorescence increase of papain at alkaline pH, arising from Trp-177 and due to deprotonization of the adjacent His-159, was abolished on binding of cystatin to the enzyme, further supporting the proposal that this region of papain participates in the interaction with the inhibitor. A stoichiometry of binding of either cystatin form to papain of 1:1 and a lower limit for the binding constant of 10(9) M-1 were determined by titrations monitored by either the ultraviolet absorption or fluorescence changes induced by the interaction.  相似文献   

18.
The decrease of the intrinsic tryptophan fluorescence intensity of purified influenza (X31 strain) hemagglutinin (HA) was used to monitor the low pH-induced conformational change of this protein. The kinetics of the fluorescence decrease depended strongly on the pH. At pH optimal for fusion, the change in tryptophan fluorescence was fast and could be fitted to a monoexponential function. We measured a rate constant of 5.78 s-1 (t1/2 = 120 ms) at pH 4.9 using rapid stopped-flow mixing. Under suboptimal conditions (higher pH), the rate constant was decreased by an order of magnitude. In addition, a slow component appeared and the fluorescence decrease followed a sum of two exponentials. The kinetics of conformational changes were compared with those of the fusion of influenza virus with red blood cell membranes as assessed by the R18-dequenching assay. At optimal pH the HA conformational change was not rate-limiting for the fusion process. However, at sub-optimal pH, the slow transition to the fusogenic conformational of HA resulted in slower kinetics and decreased extent of fusion.  相似文献   

19.
The tryptophyl fluorescence emission of yeast 3-phosphoglycerate kinase decreases from pH 3.9 to pH 7.2 following a normal titration curve with an apparent pK of 4.7. The fluorescence decays have been determined at both extreme pH by photocounting pulse fluorimetry and have been found to vary with the emission wavelength. A quantitative analysis of these results according to a previously described method allows to determine the emission characteristics of the two tryptophan residues present in the protein molecule. At pH 3.9, one of the tryptophan residues is responsible for only 13% of the total fluorescence emission. This first residue has a lifetime τ1= 0.6 ns and a maximum fluorescence wavelength λ2max = 332 nm. The second tryptophan residue exhibits two lifetimes τ21= 3.1 ns and τ22= 7.0 ns (λ2max= 338 nm). In agreement with the attribution of τ21and τ32 to the same tryptophan residue, the ratio β = C21/C22 of the normalized amplitudes is constant along the fluorescence emission spectrum. At pH 7.2, the two tryptophan residues contribute almost equally tc the protein fluorescence. The decay time of tryptophan 1 is 0.4 ns. The other emission parameters are the same as those determined at pH 3.9. We conclude that the fluorescence quenching in the range pH 3.9 to pH 8.0 comes essentially from the formation of a non emitting internal ground state complex between the tryptophan having the longest decay times and a neighbouring protein chemical group. The intrinsic pK of this group and the equilibrium constant of the irternal complex can be estimated. The quenching group is thought to be a carboxylate anion. Excitation transfers between the two tryptophyl residues of the protein molecule appear to have a small efficiency.  相似文献   

20.
Allosteric interactions in the cupro-heme enzyme tryptophan oxygenase (EC 1.13.11.11) of Pseudomonas acidovorans are shown to be pH-dependent. Increasing the assay pH from 6.0 to 8.0 progressively desensitizes the enzyme from both homotropic and heterotropic ligand interactions. This pH-dependent reversible transition has a pK of 6.2. Hill coefficients for the substrate L-tryptophan of 2.0 and 1.4 were measured at pH 6.0 and pH 7.0, respectively. In attempting to identify the enzymatic residue (or residues) responsible for these pH-dependent effects, the enzyme was observed to be irreversibly inactivated by photoinduced oxidation in the presence of the sensitizer, methylene blue. The photoinactivated enzyme showed a loss of one-half its Soret (405 nm) absorption which accompanied the loss of one-half its heme and histidine contents. This first order photoinduced inactivation was pH-dependent and corresponded to a requirement for a protonated species with a pK of 6.2. These results suggest that histidine residues may be involved in the catalytic function and in mediating cooperative interactions of tryptophan oxygenase. Absolute and difference sedimentation velocity analyses indicate that the molecule undergoes a conformational transition when the pH is decreased from pH 8.0 to pH 6.0. This conformational alteration, measured as a 3.9% increase in S20, w can be regarded as an equivalent decrease in the frictional coefficient. If, a more or less spherical shape to the molecule is assumed, then, the 3.9% decrease in the frictional coefficient between pH 8.0 and 6.0 corresponds to a 12% decrease in apparent hydrodynamic volume of the enzyme. Thus, protonation of an enzymatic moiety, possibly histidine, determines both the conformational and functional interactions between enzymatic sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号