首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In response to overfeeding, the Landes goose develops a fatty liver that is twice as large as that of the Poland goose, despite similar food intake. The role of hepatic lipogenesis in the genetic susceptibility to fatty liver was assessed in male overfed geese of the two breeds. For a similar hepatic protein content, total activities of malic enzyme, glucose-6-phosphate dehydrogenase, acetyl-Coa-carboxylase and fatty acid synthase, and specific activity and mRNA level of malic enzyme were about two-fold higher in the Landes goose. In the Poland goose, the weight of the fatty liver was correlated positively with the specific activity of ME and the VLDL concentration, which was not the case in the Landes breed. These results show that: (1) hepatic lipogenesis remains very active until the end of the overfeeding period; (2) the pentose-phosphate pathway may function in birds, contrary to what is assumed usually; (3) the level of hepatic lipogenesis is a major factor in the susceptibility to hepatic steatosis in different breeds of geese; and (4) ME activity may be a limiting factor of lipid synthesis in the less susceptible Poland breed.  相似文献   

2.
The lipoprotein-lipase (LPL) hydrolyses the triacylglycerols (TG) secreted by the liver and, thus, allows the storage of lipids onto the extrahepatic tissues. The LPL activity has been studied by injection of LPL antibodies in three genotypes of ducks (Muscovy (Cairina moschat), Pekin (Anas plathyrhynchos) and Mule (hybrids of male Muscovy ducks and female Pekin ducks)) under overfeeding condition. The results show a similar weight gain between injected and control animals. A higher liver steatosis is observed in Mule ducks (616+/-18 g; 8.79% of body mass (BW)) and Muscovy ducks (514+/-13 g; 7.05% BW) compared to Pekin ducks (353+/-21 g; 5.89% BW, p<0.05). Pekin ducks showed a much marked extrahepatic fattening of abdominal and subcutaneous adipose tissues. The LPL activity was evaluated by comparing the evolution of the plasma TG concentrations after injections of saline (control animals) or injections of specific LPL-antibodies. Inhibition of LPL activity performed by intravenous injections of LPL-antibodies showed a spectacular increase in the plasma TG concentrations in the three genotypes. That increase was considerably higher in Pekin ducks (98+/-10 g/L) compared to Muscovy ducks (35+/-2 g/L, p<0.01) and Mule ducks (30+/-4 g/L, p<0.01). Those data suggest that a high export of lipids synthesized in liver and a high LPL activity occur in overfed Pekin ducks, which can favour the extrahepatic fattening to the detriment of the liver steatosis, and conversely in overfed Muscovy and Mule ducks.  相似文献   

3.
Pan ZX  Han CC  Wang JW  Li L  Tang H  Lv J  Lu L  Xu F 《Molecular biology reports》2011,38(5):3417-3425
The EST sequence of goose (Anser cygnoides) Stearoyl-CoA desaturase 1(SCD-1) was obtained from a subtractive cDNA library. To further investigate the role of SCD-1 in lipid metabolism in geese, 5′-RACE and 3′-RACE were carried out in this study to obtain the complete cDNA sequence of goose SCD-1, which contained a 29-bp 5′ UTR, a 1074-bp open reading frame (ORF) encoding 357 amino acids, and a 125-bp 3′ UTR. The expression of SCD-1 was measured in several tissues, and the effects of overfeeding on the expression of SCD-1 were studied. The results of real time RT-PCR demonstrated that, compared to the brain, goose SCD-1 mRNA was more abundant in the liver. Overfeeding markedly increased the mRNA expression of SCD-1 in the liver of Sichuan White and Landes geese, and gene expression was markedly higher in the Sichuan White goose than in the landes goose. The mRNA abundance of SCD-1 in the liver had significant positive correlations with triacylglycerol (TG) content in liver lipids and in the levels of plasma insulin and very low-density lipoproteins (VLDL) levels in Sichuan white geese. However, the mRNA abundance of SCD-1 in the livers of Landes geese had only significant positive correlations with the TG content in liver lipids. In conclusion, SCD-1 is not only critical for hepatic steatosis in geese but is also important for the difference in lipid deposition in the livers of the two breeds.  相似文献   

4.
The liver secretes triglyceride-rich VLDLs, and the triglycerides in these particles are taken up by peripheral tissues, mainly heart, skeletal muscle, and adipose tissue. Blocking hepatic VLDL secretion interferes with the delivery of liver-derived triglycerides to peripheral tissues and results in an accumulation of triglycerides in the liver. However, it is unclear how interfering with hepatic triglyceride secretion affects adiposity, muscle triglyceride stores, and insulin sensitivity. To explore these issues, we examined mice that cannot secrete VLDL [due to the absence of microsomal triglyceride transfer protein (Mttp) in the liver]. These mice exhibit markedly reduced levels of apolipoprotein B-100 in the plasma, along with reduced levels of triglycerides in the plasma. Despite the low plasma triglyceride levels, triglyceride levels in skeletal muscle were unaffected. Adiposity and adipose tissue triglyceride synthesis rates were also normal, and body weight curves were unaffected. Even though the blockade of VLDL secretion caused hepatic steatosis accompanied by increased ceramides and diacylglycerols in the liver, the mice exhibited normal glucose tolerance and were sensitive to insulin at the whole-body level, as judged by hyperinsulinemic euglycemic clamp studies. Normal hepatic glucose production and insulin signaling were also maintained in the fatty liver induced by Mttp deletion. Thus, blocking VLDL secretion causes hepatic steatosis without insulin resistance, and there is little effect on muscle triglyceride stores or adiposity.  相似文献   

5.
When overfed at their maximum (intensive overfeeding) or at only 80% (moderate overfeeding) of food intake capacity, Mule ducks developed strong liver steatosis, whereas Pekin ducks showed very marked extrahepatic fattening. During overfeeding, evolution of plasma glucose and triacylglycerol concentrations suggested a very strong increase in the hepatic lipogenesis as well as genotype- and diet-independent lipoprotein secretion. In contrast, lipoprotein-lipase activity was dependent on alimentary status (the intensive overfeeding induces the highest activities), and Pekin ducks showed higher lipoprotein-lipase activity than Mule ducks, which could favor extrahepatic fattening to the detriment of hepatic steatosis. In Pekin ducks, plasma pancreatic hormone concentrations are related to diet levels and blood sugar. With similar food intake, Mule ducks (moderately overfed) showed global blood insulin lower than that of Pekin ducks (intensively overfed) despite similar blood sugar levels, suggesting a trend towards reduced pancreas response to glucose in Mule ducks. This may result from their lower lipoprotein-lipase activity as previously shown in these two ducks overfed at only 60% of their maximal food intake capacity (unpublished results). These results suggest that high plasma insulin concentrations may be necessary to induce an optimum lipoprotein-lipase activity in overfed ducks.  相似文献   

6.
The increased prevalence of obesity and diabetes in human populations can induce the deposition of fat (triacylglycerol) in the liver (steatosis). The current view is that most hepatic triacylglycerols are derived from fatty acids released from adipose tissue. In this study, we show that phosphatidylcholine (PC), an important structural component of cell membranes and plasma lipoproteins, can be a precursor of ~65% of the triacylglycerols in liver. Mice were injected with [(3)H]PC-labeled high density lipoproteins (HDLs). Hepatic uptake of HDL-PC was ~10 μmol/day, similar to the rate of hepatic de novo PC synthesis. Consistent with this finding, measurement of the specific radioactivity of PC in plasma and liver indicated that 50% of hepatic PC is derived from the circulation. Moreover, one-third of HDL-derived PC was converted into triacylglycerols. Importantly, ~65% of the total hepatic pool of triacylglycerol appears to be derived from hepatic PC, half of which is derived from HDL. Thus, lipoprotein-associated PC should be considered a quantitatively significant source of triacylglycerol for the etiology of hepatic steatosis.  相似文献   

7.
The lipoprotein-lipase (LPL) hydrolyses the triacylglycerols (TG) secreted by the liver and, thus, allows the storage of lipids onto the extrahepatic tissues. The LPL activity has been studied by injection of LPL antibodies in three genotypes of ducks (Muscovy (Cairina moschat), Pekin (Anas plathyrhynchos) and Mule (hybrids of male Muscovy ducks and female Pekin ducks)) under overfeeding condition. The results show a similar weight gain between injected and control animals. A higher liver steatosis is observed in Mule ducks (616 ± 18 g; 8.79% of body mass (BW)) and Muscovy ducks (514 ± 13 g; 7.05% BW) compared to Pekin ducks (353 ± 21 g; 5.89% BW, p < 0.05). Pekin ducks showed a much marked extrahepatic fattening of abdominal and subcutaneous adipose tissues. The LPL activity was evaluated by comparing the evolution of the plasma TG concentrations after injections of saline (control animals) or injections of specific LPL-antibodies. Inhibition of LPL activity performed by intravenous injections of LPL-antibodies showed a spectacular increase in the plasma TG concentrations in the three genotypes. That increase was considerably higher in Pekin ducks (98 ± 10 g/L) compared to Muscovy ducks (35 ± 2 g/L, p < 0.01) and Mule ducks (30 ± 4 g/L, p < 0.01). Those data suggest that a high export of lipids synthesized in liver and a high LPL activity occur in overfed Pekin ducks, which can favour the extrahepatic fattening to the detriment of the liver steatosis, and conversely in overfed Muscovy and Mule ducks.  相似文献   

8.
Non-alcoholic fatty liver disease (NAFLD) is characterized by hepatic fat accumulation and is presently the most common chronic liver disease. However, the mechanisms underlying the development of steatosis remain unclear. MicroRNAs (miRNAs) are small non-coding RNAs that modulate a variety of biological functions. We have investigated the role of miRNA in the development of steatosis. We found that miR-467b expression is significantly downregulated in liver tissues of high-fat diet fed mice and in steatosis-induced hepatocytes. The downregulation of miR-467b resulted in the upregulation of hepatic lipoprotein lipase (LPL), the direct target of miR-467b. Moreover, the interaction between miR-467b and LPL was associated with insulin resistance, a major cause of NAFLD. These results suggest that downregulation of miR-467b is involved in the development of hepatic steatosis by modulating the expression of its target, LPL.  相似文献   

9.
Betaine administration corrects ethanol-induced defective VLDL secretion   总被引:1,自引:0,他引:1  
Our previous studies, demonstrating ethanol-induced alterations in phosphatidylcholine (PC) synthesis via the phosphatidylethanolamine methyltransferase (PEMT) pathway, implicated a defect in very low-density lipoprotein (VLDL) secretion in the pathogenesis of hepatic steatosis. The objective of this study was to determine whether VLDL secretion was reduced by chronic ethanol consumption and whether betaine supplementation, that restores PEMT activity and prevents the development of alcoholic steatosis, could normalize VLDL secretion. The VLDL secretion in rats fed with control, ethanol and the betaine supplemented diets was determined using Triton WR-1339 to inhibit plasma VLDL metabolism. We observed reduced VLDL production rates in chronic alcohol-fed rats compared to control animals. Supplementation of betaine in the ethanol diet increased VLDL production rate to values significantly higher than those observed in the control diet-fed rats. To conclude, chronic ethanol consumption impairs PC generation via the PEMT pathway resulting in diminished VLDL secretion which contributes to the development of hepatic steatosis. By increasing PEMT-mediated PC generation, betaine results in increased fat export from the liver and attenuates the development of alcoholic fatty liver.  相似文献   

10.
It was previously known that lipoprotein lipase (LPL) activity in plasma rises after infusion of a fat emulsion. To explore the mechanism we have compared the release of LPL by emulsion to that by heparin. After bolus injections of a fat emulsion (Intralipid) to rats, plasma LPL activity gradually rose 5-fold to a maximum at 6-8 min. During the same time the concentration of injected triacylglycerols (TG) decreased by about half. Hence, the time-course for plasma LPL activity was quite different from that for plasma TG. The disappearance of injected 125I-labelled bovine LPL from circulation was retarded by emulsion. This effect was more marked 30 min than 3 min after injection of the emulsion. The data indicate that the release of LPL into plasma is not solely due to binding of the lipase to the emulsion particles as such, but involves metabolism of the particles. Emulsion increased the fraction of labelled LPL found in adipose tissue, heart and the red muscle studied, but had no significant effect on the fraction found in liver. The effects of emulsion were quite different from those of heparin, which caused an immediate release of the lipase to plasma, decreased uptake of LPL in most extrahepatic tissues by 60-95%, and increased the fraction taken up in the liver.  相似文献   

11.
In an experimental strain of white plumage geese created in 1989, two experiments were carried out from 1993 to 1995 in order to estimate genetic parameters for growth, and carcass composition traits in non-overfed animals, and genetic parameters for growth and fatty liver formation in overfed animals. Four hundred and thirty-one non-overfed animals were bred and slaughtered at 11 weeks of age; they were measured for forearm length, keel bone length, chest circumference and breast depth before and after slaughtering. The carcasses were partly dissected in order weigh breast, breast muscle and skin + fat, and abdominal fat. Four hundred and seventy-seven overfed animals were slaughtered at 20 weeks of age; they were measured for "paletot" (breast meat, bone and meat from wings, bone and meat from thigh and legs) weight and liver weight. In these two experiments, the weights had moderate to high heritability values. Breast depth measured on live animals showed a low heritability value. In overfed animals, liver weight showed a high heritability value. Liver weight could be increased by selection without a great effect on "paletot" weight. Thus, obtaining a white plumage geese strain for fatty liver production by selection would be difficult because only 20% of overfed animals had fatty liver. The results did not allow to conclude on the influence of selection on liver weight on carcass traits such as muscle or fatty tissue weight.  相似文献   

12.
Time-restricted feeding (TRF) can reduce adiposity and lessen the co-morbidities of obesity. Mice consuming obesogenic high-fat (HF) diets develop insulin resistance and hepatic steatosis, but have elevated indices of long-chain polyunsaturated fatty acids (LCPUFA) that may be beneficial. While TRF impacts lipid metabolism, scant data exist regarding the impact of TRF upon lipidomic composition of tissues. We (1) tested the hypothesis that TRF of a HF diet elevates LCPUFA indices while preventing insulin resistance and hepatic steatosis and (2) determined the impact of TRF upon the lipidome in plasma, liver, and adipose tissue. For 12 weeks, male, adult mice were fed a control diet ad libitum, a HF diet ad libitum (HF-AL), or a HF diet with TRF, 12 hours during the dark phase (HF-TRF). HF-TRF prevented insulin resistance and hepatic steatosis resulting from by HF-AL treatment. TRF-blocked plasma increases in LCPUFA induced by HF-AL treatment but elevated concentrations of triacylglycerols and non-esterified saturated fatty acids. Analysis of the hepatic lipidome demonstrated that TRF did not elevate LCPUFA while reducing steatosis. However, TRF created (1) a separate hepatic lipid signature for triacylglycerols, phosphatidylcholine, and phosphatidylethanolamine species and (2) modified gene and protein expression consistent with reduced fatty acid synthesis and restoration of diurnal gene signaling. TRF increased the saturated fatty acid content in visceral adipose tissue. In summary, TRF of a HF diet alters the lipidomic profile of plasma, liver, and adipose tissue, creating a third distinct lipid metabolic state indicative of positive metabolic adaptations following HF intake.  相似文献   

13.
The aim of this study was to analyse the effects of species (Muscovy and Pekin ducks) and age at the beginning of the overfeeding period on fatty liver production, carcass composition and lipid and moisture content of the liver and breast muscle. We reared four groups of 40 ducks per species for the study, starting at 2-week intervals in order to have four different ages together at the beginning of the overfeeding period (10, 12, 14 and 16 weeks). At the end of the overfeeding period, all ducks were slaughtered. Our results confirmed the high levels of difference in carcass composition and lipid content in the plasma, liver and breast muscle between Muscovy and Pekin ducks at all ages. Pekin ducks were not able to develop a high degree of hepatic steatosis, but had increased lipid storage in peripheral adipose and muscle tissues than Muscovy ducks. However, the fatty liver weight of Pekin ducks increased with age, with lipid deposition in the liver and peripheral tissues. The ability of Muscovy ducks to produce fatty livers remained unchanged with age in line, with lipid deposition in the liver and peripheral tissues. The sites of lipid deposition thus depend on species and not on the physiological maturity of ducks.  相似文献   

14.
Our main objectives were to determine the genes involved in the establishment of hepatic steatosis in three genotypes of palmipeds. To respond to this question, we have compared Muscovy ducks, Pekin ducks and their crossbreed the mule duck fed ad libitum or overfed. We have shown a hepatic overexpression of fatty acid synthase (FAS) and di-acyl glycerol acyl transferase 2 (DGAT2) in overfed individuals, where DGAT2 seemed to be more regulated. This increase in lipogenesis genes is associated with a decrease of lipoprotein formation in Muscovy and mule ducks, especially apolipoprotein B (ApoB) and Microsomal Triglyceride Transfer Protein (MTTP), leading to lipid accumulation in liver. In Pekin ducks, MTTP expression is upregulated suggesting a better hepatic lipids exportation. Regarding lipids re-uptake, fatty acid-binding protein 4 and very-low-density-lipoprotein receptor are overexpressed in liver of mule ducks at the end of the overfeeding period. This phenomenon puts light on a mechanism unknown until today. In fact, mule can incorporate more lipids in liver than the two other genotypes leading to an intensified hepatic steatosis. To conclude, our results confirmed the genotype variability to overfeeding. Furthermore, similar observations are already described in non-alcoholic fatty liver disease in human, and ask if ducks could be an animal model to study hepatic triglyceride accumulation.  相似文献   

15.
A follow-up study was performed to describe characteristic physiological alterations by means of computer tomography, direct chemical analysis and histology of the liver, and blood biochemical parameters during conventional force-feeding of Landes geese. 30 birds were exposed to an 18-day long force-feeding. Sampling was performed at the start and during force-feeding (7th, 11th, 14th, 18th days). Computer tomographic data were plotted in 3D histograms, effectively indicating the volumetric development and the fat deposition of the liver. Applying the so-called fat index, a saturation process was found for the hepatic fat content. Histological sections indicated the appearance of microvesicular fat forms in the hepatocyte cytoplasm, which first turned to a total fatty infiltration, later changing to a macrovesicular form with progressing inflammation; membrane damage was not visualized. In blood metabolites triglyceride, total and HDL cholesterol and uric acid increased measurably, while creatinine concentration decreased. Alanine aminotransferase, aspartate aminotransferase activities increased strongly, while that of lactate dehydrogenase only slightly. Based on the results of macroscopic and microscopic imaging techniques and blood biochemical parameters, a comprehensive follow-up study was performed, elucidating still unknown processes during force-feeding of geese.  相似文献   

16.
The metabolic syndrome and the hepatic fatty acid drainage hypothesis   总被引:4,自引:0,他引:4  
Much data indicates that lowering of plasma triglyceride levels by hypolipidemic agents is caused by a shift in the liver metabolism towards activation of peroxisome proliferator activated receptor (PPAR)alpha-regulated fatty acid catabolism in mitochondria. Feeding rats with lipid lowering agents leads to hypolipidemia, possibly by increased channeling of fatty acids to mitochondrial fatty acid oxidation at the expense of triglyceride synthesis. Our hypothesis is that increased hepatic fatty acid oxidation and ketogenesis drain fatty acids from blood and extrahepatic tissues and that this contributes significantly to the beneficial effects on fat mass accumulation and improved peripheral insulin sensitivity. To investigate this theory we employ modified fatty acids that change the plasma profile from atherogenic to cardioprotective. One of these novel agents, tetradecylthioacetic acid (TTA), is of particular interest due to its beneficial effects on lipid transport and utilization. These hypolipidemic effects are associated with increased fatty acid oxidation and altered energy state parameters of the liver. Experiments in PPAR alpha-null mice have demonstrated that the effects hypolipidemic of TTA cannot be explained by altered PPAR alpha regulation alone. TTA also activates the other PPARs (e.g., PPAR delta) and this might compensate for deficiency of PPAR alpha. Altogether, TTA-mediated clearance of blood triglycerides may result from a lowered level of apo C-III, with a subsequently induction of hepatic lipoprotein lipase activity and (re)uptake of fatty acids from very low density lipoprotein (VLDL). This is associated with an increased hepatic capacity for fatty acid oxidation, causing drainage of fatty acids from the blood stream. This can ultimately be linked to hypolipidemia, anti-adiposity, and improved insulin sensitivity.  相似文献   

17.
The possibility that impaired removal of lipoprotein triglyceride from the circulation may be a participating factor in the hypertriglyceridemia of the obese Zucker rat was examined. We found no significant differences in the heparin-released lipoprotein lipase (LPL) activities of the adipose tissue, skeletal muscle, and heart (expressed per gram of tissue) from the lean and obese Zucker rats. Furthermore, the kinetic properties of adipose tissue and heart LPL from the lean and obese rats were similar, indicating that the catalytic efficiency of the enzyme was unaltered in the obese animals. The postheparin plasma LPL activities of lean and obese rats were also similar. However, the postheparin plasma hepatic triglyceride lipase (H-TGL) activity in the obese rats was elevated. The higher activity of H-TGL could not alleviate the hypertriglyceridemia in these animals. Since hypertriglyceridemia in the obese rats could also be due to the hepatic production of triglyceride-rich lipoproteins which are resistant to lipolysis, we therefore isolated very low density lipoproteins (VLDL) from lean and obese rat liver perfusates and examined their degradation by highly purified human milk LPL. Although certain differences were observed in hepatic VLDL triglyceride fatty acid composition, the kinetic patterns of LPL-catalyzed triglyceride disappearance from lean and obese rat liver perfusate VLDL were similar. The isolated liver perfusate VLDL contained sufficient apolipoprotein C-II for maximum lipolysis. These results indicate that impaired lipolysis is not a contributing factor in the genesis of hypertriglyceridemia in the genetically obese Zucker rat. The hyperlipemic state may be attributed to hypersecretion of hepatic VLDL and consequent saturation of the lipolytic removal of triglyceride-rich lipoproteins from the circulation.  相似文献   

18.
Adipose tissue lipoprotein lipase (LPL) is a necessary enzyme for storage of very‐low‐density lipoprotein–triglyceride (VLDL‐TG), but whether it is a rate‐determining step is unknown. To test this hypothesis we included 10 upper‐body obese (UBO), 11 lower‐body obese (LBO), and 8 lean women. We infused ex vivo‐labeled VLDL‐14C‐TG and then performed adipose tissue biopsies to understand the relationship between VLDL‐TG storage and LPL activity in femoral and upper‐body subcutaneous fat. Both fractional tracer storage and rate of storage of the VLDL‐TG tracer were evaluated. VLDL‐TG storage was also examined as a function of regional adipose tissue blood flow (ATBF), insulin, VLDL‐TG turnover, regional fat mass, fat‐free mass (FFM), and fat cell size. LPL activity per adipocyte was significantly greater in obese than lean women but not significantly different per gram lipid. Both VLDL‐TG fractional tracer storage per kg lipid and VLDL‐TG storage rate per kg lipid were similar in abdominal and femoral fat in all three groups and were not significantly different between groups. Multiple regression analysis identified FFM and femoral fat mass as significant independent predictors of VLDL‐TG fractional tracer storage and insulin as a significant predictor of VLDL‐TG fatty acid storage rate. LPL activity, ATBF, and VLDL‐TG turnover did not predict VLDL‐TG storage. We conclude that lower FFM and greater plasma insulin are associated with greater VLDL‐TG deposition in abdominal subcutaneous and femoral fat. Greater femoral fat mass signals greater femoral VLDL‐TG storage. We suggest that the differences in VLDL‐TG storage in abdominal and femoral fat that occur with progressive obesity are regulated through mechanisms other than LPL activity.  相似文献   

19.
Some studies have shown that expression of peroxisome proliferator-activated receptor gamma (PPARG), a key regulator of adipogenesis, and of some adipocyte-specific genes or adipokines are expressed in hepatic steatosis, leading to the concept of ‘adipogenic hepatic steatosis’ or ‘hepatic adiposis.’ Most of these studies were conducted in genetic obese mouse models or after manipulation of gene expression. The relevance of this concept to other species and more physiological models was here addressed in ducks which are able to develop hepatic steatosis after overfeeding. The expression of PPARG and other adipocyte-specific genes was thus analyzed in the liver of ducks fed ad libitum or overfed and compared with those observed in adipose tissues. Pekin (Anas platyrhynchos) and Muscovy ducks (Cairina moschata) were analyzed, as metabolic responses to overfeeding differ according to these two species, Muscovy ducks having a greater ability to synthesize and store lipids in the liver than Pekin ducks. Our results indicate that adipocyte-specific genes are expressed in the liver of ducks, PPARG and fatty acid-binding protein 4 being upregulated and adiponectin and leptin receptor downregulated by overfeeding. However, these expression levels are much lower than those observed in adipose tissue suggesting that fatty liver cells are not transformed to adipocytes, although some hepato-specific functions are decreased in fatty liver when compared with normal liver.  相似文献   

20.
alpha-Tocopherol is a lipid-soluble antioxidant that helps to prevent oxidative damage to cellular lipids. alpha-Tocopherol is absorbed by the intestine and is taken up and retained by the liver; it is widely presumed that alpha-tocopherol is then delivered to peripheral tissues by the secretion of VLDL. To determine whether VLDL secretion is truly important for the delivery of alpha-tocopherol to peripheral tissues, we examined alpha-tocopherol metabolism in mice that lack microsomal triglyceride transfer protein (Mttp) expression in the liver and therefore cannot secrete VLDL (Mttp(Delta/Delta) mice). Mttp(Delta/Delta) mice have low plasma lipid levels and increased stores of lipids in the liver. Similarly, alpha-tocopherol levels in the plasma were lower in Mttp(Delta/Delta) mice than in controls, whereas hepatic alpha-tocopherol stores were higher. However, alpha-tocopherol levels in the peripheral tissues of Mttp(Delta/Delta) mice were nearly identical to those of control mice, suggesting that VLDL secretion is not critical for the delivery of alpha-tocopherol to peripheral tissues. When fed a diet containing deuterated alpha-tocopherol, Mttp(Delta/Delta) and control mice had similar incorporation of deuterated alpha-tocopherol into plasma and various peripheral tissues. We conclude that the absence of VLDL secretion has little effect on the stores of alpha-tocopherol in peripheral tissues, at least in the mouse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号