首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aspirin and other non-steroidal anti-inflammatory drugs induce apoptosis in many cell types. Although the involvement of caspases has been demonstrated, the mechanism leading to caspase activation remains unknown. We have studied the role of the mitochondrial pathway in aspirin-induced apoptosis. The apoptotic effect of aspirin was analyzed in different cell lines (Jurkat, MOLT-4, Raji and HL-60) showing induction of mitochondrial cytochrome c release and caspases 9, 3 and 8 processing. Furthermore, early aspirin-induced cytochrome c release was not affected by the caspase inhibitor Z-VAD·fmk and preceded loss of mitochondrial membrane potential. Therefore, aspirin-induced apoptosis involves caspase activation through cytochrome c release.  相似文献   

2.
Nitric oxide (NO) from (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (NOC-18) induces apoptosis in human leukemia HL-60 cells. This effect was prevented by the pan-caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (Z-VAD-FMK), thereby implicating caspase activity in the process. NOC-18 treatment resulted in the activation of several caspases including caspase-3, -6, -8, and -9(-like) activities and the degradation of several caspase substrates such as nuclear lamins and SP120 (hnRNP-U/SAF-A). Moreover, release of cytochrome c from mitochondria was also observed during NOC-18-induced apoptosis. This change was substantially prevented by Z-VAD-FMK, thereby suggesting that the released cytochrome c might function not only as an initiator but also as an amplifier of the caspase cascade. Bid, a death agonist member of the Bcl-2 family, was processed by caspases following exposure of cells to NOC-18, supporting the above notion. Thus, NO-mediated apoptosis in HL-60 cells involves a caspase/cytochrome c-dependent mechanism.  相似文献   

3.
The mitochondria-mediated caspase activation pathway is a major apoptotic pathway characterized by mitochondrial outer membrane permeabilization (MOMP) and subsequent release of cytochrome c into the cytoplasm to activate caspases. MOMP is regulated by the Bcl-2 family of proteins. This pathway plays important roles not only in normal development, maintenance of tissue homeostasis and the regulation of immune system, but also in human diseases such as immune disorders, neurodegeneration and cancer. In the past decades the molecular basis of this pathway and the regulatory mechanism have been comprehensively studied, yet a great deal of new evidence indicates that cytochrome c release from mitochondria does not always lead to irreversible cell death, and that caspase activation can also have non-death functions. Thus, many unsolved questions and new challenges are still remaining. Furthermore, the dysfunction of this pathway involved in cancer development is obvious, and targeting the pathway as a therapeutic strategy has been extensively explored, but the efficacy of the targeted therapies is still under development. In this review we will discuss the mitochondria-mediated apoptosis pathway and its physiological roles and therapeutic implications.  相似文献   

4.
Mitochondrial dysfunction has been implicated in the regulation of myofiber loss during aging, possibly by apoptotic pathways. However, the mitochondrial-mediated pathway of apoptosis by cytochrome c in skeletal muscle remains ambiguous. To understand this, we have studied the upstream and downstream events of cytochrome c release, and assessed the efficacy of carnitine and lipoic acid cosupplementation. The results show that elevated levels of cytosolic cytochrome c activate apoptosis in aged rats, and was confirmed further by in vitro caspase-3 assay. Interestingly, the exogenous addition of cytochrome c results in a much higher increase of caspase-3 activity in aged treated rats than age-matched control rats, strongly suggesting that cytochrome c is a limiting factor for caspase-3 activation in the cytosol. Carnitine and lipoic acid supplement decreased apoptosis in aged rats by maintaining mitochondrial membrane integrity and thereby preventing further loss of cytochrome c in vivo. Furthermore, the upregulation of p53 observed in aged rats is attributed to the loss of outer mitochondrial membrane integrity and subsequent release of cytochrome c through BH3-only proteins. In conclusion, the p53-dependent activation of the mitochondrial-cytochrome c pathway of apoptosis in the present study suggests the existence of cross talk between mitochondria and nucleus. However, the exact molecular mechanism remains to be explored. Oral supplements of carnitine and lipoic acid play an antiapoptotic role in aged rat skeletal muscle by protecting mitochondrial membrane integrity.  相似文献   

5.
Deprivation of tyrosine (Tyr) and phenylalanine (Phe) inhibits growth and induces programmed cell death (apoptosis) of human A375 melanoma cells. Herein, we found that activation of caspases and release of mitochondrial cytochrome c are required for this process. Culturing A375 cells in Tyr/Phe-free medium, containing 10% dialyzed fetal bovine serum, results in activation of caspase-3-like activity. This is accompanied by decreased cell viability and increased apoptosis. Tyr/Phe deprivation also stimulates proteolytic cleavage of the DNA repair enzyme, poly(ADP-ribose) polymerase (PARP). Western blot analysis showed that caspases 3, 7, 8, and 9 are activated by deprivation of Tyr/Phe. Tyr/Phe deprivation decreases mitochondrial membrane potential, induces cleavage of Bid, increases translocation of Bax from the cytosol to mitochondria, and results in release of cytochrome c from the mitochondria to the cytosol. Apoptosis due to Tyr/Phe deprivation is almost completely inhibited by the broad-spectrum cell-permeable caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (Z.VAD.fmk). This inhibitor suppresses the cleavage of Bid, the release of cytochrome c from the mitochondria to the cytosol, and the cleavage of PARP. Decylubiquinone, a mitochondrial permeability transition pore inhibitor, does not suppress the activation of caspase 8 but suppresses release of cytochrome c, activation of caspase 9, and induction of apoptosis. These results indicate that activation of caspases, cleavage of Bid, and mitochondrial release of cytochrome c are required for apoptosis induced by Tyr/Phe deprivation.  相似文献   

6.
The turning point between apoptosis and necrosis induced by hydrogen peroxide (H2O2) have been investigated using human T-lymphoma Jurkat cells. Cells treated with 50 μM H2O2 exhibited caspase-9 and caspase-3 activation, finally leading to apoptotic cell death. Treatment with 500 μM H2O2 did not exhibit caspase activation and changed the mode of death to necrosis. On the other hand, the release of cytochrome c from the mitochondria was observed under both conditions. Treatment with 500 μM H2O2, but not with 50 μM H2O2, caused a marked decrease in the intracellular ATP level; this is essential for apoptosome formation. H2O2-reducing enzymes such as cellular glutathione peroxidase (cGPx) and catalase, which are important for the activation of caspases, were active under the 500 μM H2O2 condition. Prevention of intracellular ATP loss, which did not influence cytochrome c release, significantly activated caspases, changing the mode of cell death from necrosis to apoptosis. These results suggest that ATP-dependent apoptosome formation determines whether H2O2-induced cell death is due to apoptosis or necrosis.  相似文献   

7.
Apoptosis is mediated by members of the caspase family of proteases which can be activated by release of mitochondrial cytochrome c. Additional members of the caspase family are activated at the cell surface in response to direct stimulus from the external environment such as by activation of the Fas receptor. It has been suggested that these upstream caspases directly activate the downstream caspases which would obviate a role for cytochrome c in apoptosis induced by the Fas receptor. We demonstrate that cytochrome c is released from mitochondria of Jurkat cells in response to both staurosporine and an agonistic anti-Fas antibody and that only the latter is inhibited by the caspase inhibitor z-VAD-FMK. This suggests that an upstream caspase such as caspase-8 is required for the Fas-mediated release of mitochondrial cytochrome c. The protein phosphatase inhibitor calyculin A prevented cytochrome c release and apoptosis induced by both agents, suggesting that release of cytochrome c is required in both models. Zinc, once thought of as an endonuclease inhibitor, has previously been shown to prevent the activation of caspase-3. We show that zinc prevents the activation of downstream caspases and apoptosis induced by both insults, yet does not prevent release of mitochondrial cytochrome c. The ability of calyculin A and zinc to prevent DNA digestion implies that the mitochondrial pathway is important for induction of apoptosis by both agents. These results do not support an alternative pathway in which caspase-8 directly activates caspase-3. These results also demonstrate that a critical protein phosphatase regulates the release of cytochrome c and apoptosis induced by both insults.  相似文献   

8.
Previous results have shown that the oncoembryonic marker alpha-fetoprotein (AFP) is able to induce apoptosis in tumor cells through activation of caspase 3, bypassing Fas-dependent and tumor necrosis factor receptor-dependent signaling. In this study we further investigate the molecular interactions involved in the AFP-mediated signaling of apoptosis. We show that AFP treatment of tumor cells is accompanied by cytosolic translocation of mitochondrial cytochrome c. In a cell-free system, AFP mediates processing and activation of caspases 3 and 9 by synergistic enhancement of the low-dose cytochrome c-mediated signals. AFP was unable to regulate activity of caspase 3 in cell extracts depleted of cytochrome c or caspase 9. Using high-resolution chromatography, we show that AFP positively regulates cytochrome c/dATP-mediated apoptosome complex formation, enhances recruitment of caspases and Apaf-1 into the complex, and stimulates release of the active caspases 3 and 9 from the apoptosome. By using a direct protein-protein interaction assay, we show that pure human AFP almost completely disrupts the association between processed caspases 3 and 9 and the cellular inhibitor of apoptosis protein (cIAP-2), demonstrating its release from the complex. Our data suggest that AFP may regulate cell death by displacing cIAP-2 from the apoptosome, resulting in promotion of caspase 3 activation and its release from the complex.  相似文献   

9.
Activation of p53 induces apoptosis in various cell types. However, the mechanism by which p53 induces apoptosis is still unclear. We reported previously that the activation of a temperature-sensitive mutant p53 (p53(138Val)) induced activation of caspase 3 and apoptosis in Jurkat cells. To elucidate the pathway linking p53 and downstream caspases, we examined the activation of caspases 8 and 9 in apoptotic cells. The results showed that both caspases were activated during apoptosis as judged by the appearance of cleavage products from procaspases and the caspase activities to cleave specific fluorogenic substrates. The significant inhibition of apoptosis by a tetrapeptide inhibitor of caspase 8 and caspase 9 suggested that both caspases are required for apoptosis induction. In addition, the membrane translocation of Bax and cytosolic release of cytochrome c, but not loss of mitochondrial membrane potential, were detected at an early stage of apoptosis. Moreover, Bax translocation, cytochrome c release, and caspase 9 activation were blocked by the broad-spectrum caspase inhibitor, Z-VAD-fmk and the caspase 8-preferential inhibitor, Ac-IETD-CHO, suggesting that the mitochondria might participate in apoptosis by amplifying the upstream death signals. In conclusion, our results indicated that activation of caspase 8 or other caspase(s) by p53 triggered the membrane translocation of Bax and cytosolic release of cytochrome c, which might amplify the apoptotic signal by activating caspase 9 and its downstream caspases.  相似文献   

10.
BACKGROUND: Antimycin A (AMA) inhibits mitochondrial electron transport, collapses the mitochondrial membrane potential, and causes the production of reactive oxygen species. Previous work by me and my colleagues has demonstrated that AMA causes an array of typical apoptotic phenomena in HL-60 cells. The hypothesis that AMA causes HL-60 apoptosis by the intrinsic apoptotic pathway has now been tested. METHODS: Z-LEHD-FMK and Z-IETD-FMK were used as specific inhibitors of the initiator caspases 9 and 8, respectively. Caspase 3 activation, DNA fragmentation, and cellular disintegration were measured by flow cytometry. Cytochrome c release, chromatin condensation, and nuclear fragmentation were measured by microscopy. RESULTS: AMA caused mitochondrial cytochrome c release and neither Z-LEHD-FMK nor Z-IETD-FMK inhibited that. In the absence of caspase inhibition there was a very close correlation between cytochrome c release and caspase 3 activation. Z-LEHD-FMK blocked caspase 3 activation but enhanced DNA fragmentation and failed to stop nuclear or cellular disintegration. Z-IETD-FMK also blocked caspase 3 activation but, in contrast to Z-LEHD-FMK, delayed DNA fragmentation and disintegration of the nucleus and the cell. CONCLUSIONS: The hypothesis to explain AMA-induced HL-60 apoptosis was clearly inadequate because: (a) caspase 9 inhibition did not prevent DNA fragmentation or cell death, (b) apoptosis proceeded in the absence of caspase-3 activation, (c) the main pathway leading to activation of the executioner caspases was by caspase-8 activation, but caspase 8 inhibition only delayed apoptosis, and (d) activation of caspases 8 and 9 may be necessary for caspase-3 activation. Thus, in this cell model, apoptosis triggered from within the mitochondria does not necessarily proceed by caspase 9, and caspase 3 is not critical to apoptosis. The results provide further evidence that, when parts of the apoptotic network are blocked, a cell is able to complete the program of cell death by alternate pathways.  相似文献   

11.
Apoptosis and necrosis are critical parameters of pancreatitis, the mechanisms of which remain unknown. Many characteristics of pancreatitis can be studied in vitro in pancreatic acini treated with high doses of cholecystokinin (CCK). We show here that CCK stimulates apoptosis and death signaling pathways in rat pancreatic acinar cells, including caspase activation, cytochrome c release, and mitochondrial depolarization. The mitochondrial dysfunction is mediated by upstream caspases (possibly caspase-8) and, in turn, leads to activation of caspase-3. CCK causes mitochondrial alterations through both permeability transition pore-dependent (cytochrome c release) and permeability transition pore-independent (mitochondrial depolarization) mechanisms. Caspase activation and mitochondrial alterations also occur in untreated pancreatic acinar cells; however, the underlying mechanisms are different. In particular, caspases protect untreated acinar cells from mitochondrial damage. We found that caspases not only mediate apoptosis but also regulate other parameters of CCK-induced acinar cell injury that are characteristic of pancreatitis; in particular, caspases negatively regulate necrosis and trypsin activation in acinar cells. The results suggest that the observed signaling pathways regulate parenchymal cell injury and death in CCK-induced pancreatitis. Protection against necrosis and trypsin activation by caspases can explain why the severity of pancreatitis in experimental models correlates inversely with the extent of apoptosis.  相似文献   

12.
Mitochondrial cytochrome c, which functions as an electron carrier in the respiratory chain, translocates to the cytosol in cells undergoing apoptosis, where it participates in the activation of DEVD-specific caspases. The apoptosis inhibitors Bcl-2 or Bcl-xL prevent the efflux of cytochrome c from mitochondria. The mechanism responsible for the release of cytochrome c from mitochondria during apoptosis is unknown. Here, we report that cytochrome c release from mitochondria is an early event in the apoptotic process induced by UVB irradiation or staurosporine treatment in CEM or HeLa cells, preceding or at the time of DEVD-specific caspase activation and substrate cleavage. A reduction in mitochondrial transmembrane potential (Deltapsim) occurred considerably later than cytochrome c translocation and caspase activation, and was not necessary for DNA fragmentation. Although zVAD-fmk substantially blocked caspase activity, a reduction in Deltapsim and cell death, it failed to prevent the passage of cytochrome c from mitochondria to the cytosol. Thus the translocation of cytochrome c from mitochondria to cytosol does not require a mitochondrial transmembrane depolarization.  相似文献   

13.
Chemotherapeutic drug-induced apoptosis of human malignant glioma cells involves the death receptor-independent activation of caspases other than caspases 3 or 8 (Glaser et al., Oncogene 18, 5044-5053, 1999). Here, we report that caspases 1, 2, 3, 7, 8, and 9 are constitutively expressed in most human malignant glioma cell lines. Cytotoxic drug-induced apoptosisinvolves delayed activation of caspases 2, 7, and 9, but not 8 and 3, and is blocked by a broad spectrum caspase inhibitor, zVAD-fmk. Cytochrome c release from mitochondria precedes caspase activation during drug-induced apoptosis and is unaffected by zVAD-fmk or ectopic expression of the viral caspase inhibitor, crm-A. In contrast, ectopic expression of BCL-X(L) prevents drug-induced cytochrome c release, caspase activation and cell death. Thus, cancer chemotherapy targets the mitochondrial, caspase-dependent death pathway in human malignant glioma cells.  相似文献   

14.
Macrophage apoptosis is an important component of the innate immune defense machinery (against pathogenic mycobacteria) responsible for limiting bacillary viability. However, little is known about the mechanism of how apoptosis is executed in mycobacteria-infected macrophages. Apoptosis signal-regulating kinase 1 (ASK1) was activated in Mycobacterium avium-treated macrophages and in turn activated p38 mitogen-activated protein (MAP) kinase. M. avium-induced macrophage cell death could be blocked in cells transfected with a catalytically inactive mutant of ASK1 or with dominant negative p38 MAP kinase arguing in favor of a central role of ASK1/p38 MAP kinase signaling in apoptosis of macrophages challenged with M. avium. ASK1/p38 MAP kinase signaling was linked to the activation of caspase 8. At the same time, M. avium triggered caspase 8 activation, and cell death occurred in a Fas-associated death domain (FADD)-dependent manner. The death signal induced upon caspase 8 activation linked to mitochondrial death signaling through the formation of truncated Bid (t-Bid), its translocation to the mitochondria and release of cytochrome c. Caspase 8 inhibitor (z-IETD-FMK) could block the release of cytochrome c as well as the activation of caspases 9 and 3. The final steps of apoptosis probably involved caspases 9 and 3, since inhibitors of both caspases could block cell death. Of foremost interest in the present study was the finding that ASK1/p38 signaling was essential for caspase 8 activation linked to M. avium-induced death signaling. This work provides the first elucidation of a signaling pathway in which ASK1 plays a central role in innate immunity.  相似文献   

15.
Zhang Y  Wang H  Wang J  Han H  Nattel S  Wang Z 《FEBS letters》2003,540(1-3):125-132
In this study, we show that ultraviolet B radiation (UVB)-induced apoptosis of human keratinocytes involves mainly cytosolic signals with mitochondria playing a central role. Overexpression of Bcl-2 inhibited UVB-induced apoptosis by blocking the early generation of reactive oxygen species, mitochondrial cardiolipin degradation and cytochrome c release, without affecting Fas ligand (FasL)-induced cell death. It also prevented the subsequent activation of procaspase-3 and -8 as well as Bid cleavage in UVB-treated cells. Comparative analysis of UVB and FasL death pathways revealed a differential role and mechanism of caspase activation, with the UVB-induced activation of procaspase-8 only being a bystander cytosolic event rather than a major initiator mechanism, as is the case for the FasL-induced cell death. Our results suggest that Bcl-2 overexpression, by preventing reactive oxygen species production, helps indirectly to maintain the integrity of lysosomal membranes, and therefore inhibits the release of cathepsins, which contribute to the cytosolic activation of procaspase-8 in UVB-irradiated keratinocytes.  相似文献   

16.
The release of mitochondrial proapoptotic proteins into the cytosol is the key event in apoptosis signaling, leading to the activation of caspases. Once in the cytosol, cytochrome c triggers the formation of a caspase-activating protein complex called the apoptosome, whereas Smac/Diablo and Omi/htra2 antagonize the caspase inhibitory effect of inhibitor of apoptosis proteins (IAPs). Here, we identify diarylurea compounds as effective inhibitors of the cytochrome c-induced formation of the active, approximately 700-kDa apoptosome complex and caspase activation. Using diarylureas to inhibit the formation of the apoptosome complex, we demonstrated that cytochrome c, rather than IAP antagonists, is the major mitochondrial caspase activation factor in tumor cells treated with tumor necrosis factor. Thus, we have identified a novel class of compounds that inhibits apoptosis by blocking the activation of the initiator caspase 9 by directly inhibiting the formation of the apoptosome complex. This mechanism of action is different from that employed by the widely used tetrapeptide inhibitors of caspases or known endogenous apoptosis inhibitors, such as Bcl-2 and IAPs. Thus, these compounds provide a novel specific tool to investigate the role of the apoptosome in mitochondrion-dependent death paradigms.  相似文献   

17.
Growth factors signaling through the phosphoinositide 3-kinase/Akt pathway promote cell survival. The mechanism by which the serine/threonine kinase Akt prevents cell death remains unclear. We have previously shown that Akt inhibits the activity of DEVD-targeted caspases without changing the steady-state levels of Bcl-2 and Bcl-x(L). Here we show that Akt inhibits apoptosis and the processing of procaspases to their active forms by delaying mitochondrial changes in a caspase-independent manner. Akt activation is sufficient to inhibit the release of cytochrome c from mitochondria and the alterations in the inner mitochondrial membrane potential. However, Akt cannot inhibit apoptosis induced by microinjection of cytochrome c. We also demonstrated that Akt inhibits apoptosis and cytochrome c release induced by several proapoptotic Bcl-2 family members. Taken together, our results show that Akt promotes cell survival by intervening in the apoptosis cascade before cytochrome c release and caspase activation via a mechanism that is distinct from Bad phosphorylation.  相似文献   

18.
Chemotherapeutic drugs that inhibit the synthesis of DNA precursor thymidine triphosphate cause apoptosis, although the mechanism underlying this process remains rather unknown. Here, we describe thymineless death of human myeloid leukemia U937 cells treated with the thymidylate-synthase inhibitor 5-fluoro-2-deoxyuridine (FUdR). This apoptotic process was shown to be independent of p53, reactive oxygen species generation and CD95 activation. Caspases were activated downstream of cytochrome c but upstream of mitochondrial depolarization. Furthermore, FUdR-induced apoptosis required the presence of glucose in the culture medium at a step upstream of the release of cytochrome c from mitochondria.  相似文献   

19.
Activation of initiator and effector caspases, mitochondrial changes involving a reduction in its membrane potential and release of cytochrome c (cyt c) into the cytosol, are characteristic features of apoptosis. These changes are associated with cell acidification in some models of apoptosis. The hierarchical relationship between these events has, however, not been deciphered. We have shown that somatostatin (SST), acting via the Src homology 2 bearing tyrosine phosphatase SHP-1, exerts cytotoxic action in MCF-7 cells, and triggers cell acidification and apoptosis. We investigated the temporal sequence of apoptotic events linking caspase activation, acidification, and mitochondrial dysfunction in this system and report here that (i) SHP-1-mediated caspase-8 activation is required for SST-induced decrease in pH(i). (ii) Effector caspases are induced only when there is concomitant acidification. (iii) Decrease in pH(i) is necessary to induce reduction in mitochondrial membrane potential, cyt c release and caspase-9 activation and (iv) depletion of ATP ablates SST-induced cyt c release and caspase-9 activation, but not its ability to induce effector caspases and apoptosis. These data reveal that SHP-1-/caspase-8-mediated acidification occurs at a site other than the mitochondrion and that SST-induced apoptosis is not dependent on disruption of mitochondrial function and caspase-9 activation.  相似文献   

20.
Nitric oxide (NO) is a potent inhibitor of apoptosis in many cell types, including hepatocytes. We and others have described NO-dependent decreases in caspase activity in cells undergoing apoptosis. However, previous work has not determined whether NO disrupts the proteolytic processing and thus the activation of pro-caspases. Here we report that NO suppresses proteolytic processing and activation of multiple pro-caspases in intact cells, including caspase-3 and caspase-8. We found that both exogenous NO as well as endogenously produced NO via adenoviral inducible NO synthase gene transfer protected hepatocytes from tumor necrosid factor (TNF) alpha plus actinomycin D (TNFalpha/ActD)-induced apoptosis. Affinity labeling with biotin-VAD-fmk of all active caspase species in TNFalpha-mediated apoptosis identified four newly labeled spots (activated caspases) present exclusively in TNFalpha/ActD-treated cells. Both NO and the caspase inhibitor, Ac-DEVD-CHO, prevented the appearance of the four newly labeled spots or active caspases. Immunoanalysis of affinity labeled caspases demonstrated that caspase-3 was the major effector caspase. Western blot analysis also identified the activation of caspase-8 in the TNFalpha/ActD-treated cells, and the activation was suppressed by NO. Furthermore, NO inhibited several other events associated with caspase activation in cells, including release of cytochrome c from mitochondria, decrease in mitochondrial transmembrane potential, and cleavage of poly(ADP-ribose) polymerase in TNFalpha/ActD-treated cells. These findings indicate the involvement of multiple caspases in TNFalpha-mediated apoptosis in hepatocytes and establish the capacity of NO to inhibit not only active caspases but also caspase activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号