首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Data are presented showing that the course of decline of milk secretion with the advance of the period of lactation in farrow cows follows the course of decline of a monomolecular chemical reaction, that is each month''s milk production is a constant percentage of the production of the preceding month (94.77 per cent in the case of the cow under consideration), from which it is inferred that milk secretion is limited by a chemical reaction initiated at parturition, and declining with the decrease of the concentration of the limiting substance as it is transformed into milk. 2. Data are presented showing that the decline in milk secretion due to pregnancy is related to the increase in weight of gestating animals, from which it is inferred that growth of the fetus is in part, at least, responsible for the decline in the milk flow due to the demand of the fetus for nutrients to support its life processes.  相似文献   

2.
The validity of the assumption of a substance determining the rate of milk secretion and undergoing monomolecular destruction, based on group behavior, is questioned on the evidence from a large number of individual lactation curves. It seems probable that the rate of decrease in the rate of milk secretion with advance in lactation is dependent upon factors of a nutritional nature.  相似文献   

3.
Data are presented on the effect of age on milk secretion in the dairy cow. From the age when milk secretion usually begins (2 years) to the age when maximum body weight is reached (about 8 years) increase of milk secretion and increase of body weight with age follow the same exponential course, which is the course of a monomolecular reaction of chemistry. After this age, unlike body weight which remains practically constant, milk secretion declines exponentially, that is, the course of decline follows the course of decline of a monomolecular reaction. The whole course of milk secretion with age was therefore found to follow approximately the course of two simultaneous, consecutive, monomolecular reactions. This is taken to mean that growth and senescence go on simultaneously from the beginning to the end of life, and that each follows an exponential law with age; and therefore perhaps that the course of the two processes are limited by two consecutive chemical reactions.  相似文献   

4.
It is shown that from 2 years, the age when milk secretion usually begins, to 9 years, the age of maximum body weight, the increase of milk secretion with age follows the course of growth in body weight— both can be accurately represented by the equation of a monomolecular chemical reaction having a velocity constant of approximately the same numerical value. While increase in milk secretion and increase in body weight with age follow the same course, it is shown that increasing body weight contributes only about 20 per cent to increasing milk secretion with age. The fact that milk secretion and body weight follow the same course, even though they are largely independent of each other indicates that increase in body weight is a good measure of growth of the dairy cow; this fact also shows that the increase of milk secretion with age may be used as a measure of growth. The fact that milk secretion, like body weight, follows the course of a chemical reaction, adds further support to the theory that growth is limited by a chemical reaction.  相似文献   

5.
With the birth of a second rhinoceros calf at Bristol Zoological Gardens, it was possible to obtain samples of rhinoceros's milk during the colostral period and subsequently at regular intervals throughout sixteen months of lactation. The chemical composition and vitamin content of the samples are reported here. The analysis shows that rhinoceros's milk contains very little fat at all times during the lactation cycle.  相似文献   

6.
Protein patterns of skim milk and fat globule phases were relatively unchanging throughout 9 months lactation, the only notable differences being a rise in lysozyme and a decline up to 6 months with increase thereafter in lactoferrin. Profound changes in protein patterns of the breast secretion were observed during the first week postpartum. True colostrum, in which peptides of sIgA dominate the protein patterns, exists for at most the 2 initial days of secretion. Proteins of mature milk are not coordinated to appear in the colostral secretion simultaneously. A band corresponding to alpha-lactalbumin is present from the initial secretion; that for beta-casein emerges approximately 2 days layer.  相似文献   

7.
Early lactation parameters are difficult to estimate from commercial dairy records due to the small number of records available before the peak of production. A biological model of lactation was used with weekly milk records from a single Holstein herd to estimate these early lactation parameters and the secretion rate of milk from the average cell throughout lactation. A genetic analysis of the lactation curve parameters, calculated curve characteristics and secretion rate traits was undertaken. Early lactation traits were found to have little genetic variation and effectively zero heritability. Secretion rate traits for milk, protein, lactose and water were all moderately heritable and highly genetically correlated (>0.87) but fat secretion rate had lower genetic correlations with the other secretion rates. A similar pattern of correlations was seen between total lactation yield traits for fat, protein, lactose and water. The genetic correlations between the lactation curve traits and the secretion rate traits were calculated. Total milk yield, peak yield and maximum secretion potential were all highly correlated with milk, lactose and water secretion rates but less so with fat and protein secretion rates. In particular, fat secretion rate had a moderate to low genetic correlation with these lactation curve traits. Persistency of lactation was highly correlated with fat and protein secretion rates, more persistent lactations being associated with lower rates of secretion of these milk components. Similar levels of heritability were found, where trait genetic parameters were directly equivalent to those derived from the same dataset by random regression methods. However, by using a biological model of lactation to analyse lactation traits new insights into the biology of lactation are possible and ways to select cows on a range of lactation traits may be achieved.  相似文献   

8.
1. Progressive changes in the composition of milk from rats has been studied from day 0 to 20 of lactation and for 3 days following separation of the dams and pups at day 20 post partum. 2. The changes in concentration of Na, K and lactose suggested that secretion both prepartum and following weaning occurred by a paracellular mechanism whereas a transcellular pathway existed during established lactation. 3. The concentration of total protein and casein increased gradually throughout lactation. In contrast, the concentration of serum albumin increased and transferrin decreased markedly during early lactation. The fat content of milk declined 3-fold within 5 days of birth but the concentration of Ca, Mg and inorganic P increased. The concentration of each of these milk constituents remained constant during established lactation. 4. Following weaning the pronounced decline in lactose, K and inorganic P was negatively correlated with an increase in all other milk constituents except fat. 5. Rats fed a low energy diet produced milk with a lower fat content but with an unaltered concentration of protein and carbohydrate. The growth rate of these litters was similar for the first 5 days of lactation when compared to litters from dams fed a high energy diet. The growth rate of litters thereafter and following weaning was greater for rats fed a high energy diet.  相似文献   

9.
During prolonged lactation, the mammary gland gradually loses the capacity to produce milk. In agricultural species, this decline can be slowed by administration of exogenous growth hormone (GH), which is believed to act through insulin-like growth factor 1 (IGF1). Our previous work demonstrated delayed natural mammary gland involution in des(1-3)IGF1-overexpressing transgenic mice (Tg[Wap-des{1-3}IGF1]8266 Jmr), hereafter referred to as WAP-DES mice. The present study tested the hypothesis that overexpressed des(1-3)IGF1 would delay the loss of milk production during prolonged lactation. Accordingly, we examined lactational performance in WAP-DES mice by artificially prolonging lactation with continual litter cross-fostering. Over time, lactational capacity and mammary development declined in both WAP-DES and control mice. However, the rate of decline was 40% slower in WAP-DES mice. Mammary cell apoptosis increased by 3-fold in both groups during prolonged lactation but was not different between genotypes. Plasma concentrations of murine IGF1 were decreased in WAP-DES mice, while those of the transgenic human IGF1 were elevated during prolonged lactation. Phosphorylation of the mammary IGF1 receptor was increased in the WAP-DES mice, but only during prolonged lactation. Plasma prolactin decreased with prolonged lactation in nontransgenic mice but remained high in WAP-DES mice. The WAP-DES mice maintained a higher body mass and a greater lean body mass during prolonged lactation. These data support the conclusion that overexpressed des(1-3)IGF1 enhanced milk synthesis and mammary development during prolonged lactation through localized and direct activation of the mammary gland IGF1 receptor and through systemic effects on prolactin secretion and possibly nutrient balance.  相似文献   

10.
Milk copper (Cu) concentration declines and directly reflects the stage of lactation. Three Cu-specific transporters (Ctr1, Atp7A, Atp7B) have been identified in the mammary gland; however, the integrated role they play in milk Cu secretion is not understood. Whereas the regulation of milk composition by the lactogenic hormone prolactin (PRL) has been documented, the specific contribution of PRL to this process is largely unknown. Using the lactating rat as a model, we determined that the normal decline in milk Cu concentration parallels declining Cu availability to the mammary gland and is associated with decreased Atp7B protein levels. Mammary gland Cu transport was highest during early lactation and was stimulated by suckling and hyperprolactinemia, which was associated with Ctr1 and Atp7A localization at the plasma membrane. Using cultured mammary epithelial cells (HC11), we demonstrated that Ctr1 stains in association with intracellular vesicles that partially colocalize with transferrin receptor (recycling endosome marker). Atp7A was primarily colocalized with mannose 6-phosphate receptor (M6PR; late endosome marker), whereas Atp7B was partially colocalized with protein disulfide isomerase (endoplasmic reticulum marker), TGN38 (trans-Golgi network marker) and M6PR. Prolactin stimulated Cu transport as a result of increased Ctr1 and Atp7A abundance at the plasma membrane. Although the molecular mechanisms responsible for these posttranslational changes are not understood, transient changes in prolactin signaling play a role in the regulation of mammary gland Cu secretion during lactation.  相似文献   

11.
An extensive amount of data is presented on the growth in weight of the dairy cow from 2 to 17 years of age, covering practically the entire duration of life. The data show that after the age of 2 years the rate of growth declines in a non-cyclic manner. The course of decline in growth follows the course of decline of a monomolecular chemical reaction; that is, the percentage decline in growth with age is constant.  相似文献   

12.
Lactation plays a vital role in reproductive success, evolving with ecological adaptations of mammalian life histories. Knowledge of the lactation process in odontocetes is scarce and limited to a handful of species. We investigated the changes in milk composition across different lactation stages, including prepartum mammary secretion and early, mid‐ and late lactation of narrow‐ridged finless porpoises. Prepartum mammary secretion was greenish and characterized by high protein, low sugar, and negligible fat contents. In contrast, milk fat became predominant over protein and sugar contents throughout all lactation stages. At the early lactation stage, the contents of all milk constituents except water varied greatly. At the mid‐late lactation stage, the gross milk composition was relatively stable and was composed of, on average, 67.34% ± 4.13% water, 9.96% ± 0.75% protein, 21.40% ± 3.24% fat, and 1.72% ± 0.73% sugar. Our findings provide new insight into milk composition at different lactation stages in the narrow‐ridged finless porpoise.  相似文献   

13.
The four types of experiments on milk secretion herein described really fall into one general class so far as the physiological effects produced are concerned. Starvation lowers the blood sugar and raises the osmotic pressure of the blood. The experiment using parathyroid hormone with or without starvation may have its effects interpreted as simply due to starvation since 1000 units of this hormone produced no visible effects on the blood calcium or milk constituents different from those of starvation. Since insulin produces a marked and rapid drop in blood sugar it too may be looked upon as a rapid starvation effect. It has some other important effects, however. Briggs et al. (21) have shown that potassium and phosphorus of the blood are decreased and Luck, Morrison, and Wilbur (22) indicate a reduction in the amino acids of the blood in insulin treatment. Phloridzin lowers the threshold for sugar retention with the consequence that in time it tends to lower the sugar of the blood to an even greater extent than that noted in starvation. It tends to depress the potassium, to increase the phosphorus content of the blood, and to cause the body to burn protein rather than carbohydrate, thus increasing nitrogen excretion. All of the experiments are characterized by a sharp reduction in the milk yield. Cary and Meigs (23) have studied like reductions in milk yield produced by varying the energy or protein of the diet. They conclude that such decrease in milk production may be interpreted as due to the direct effect of the starvation and the consequent reduction of the energy and protein available to milk secretion. The reduction in milk yield for the experiments herein described can undoubtedly be attributed to the same causes as those cited by Cary and Meigs. The experiment where Cow 47 was given a full ration and at the same time injected with large quantities of insulin is of particular interest in this connection. The ration was adequate and the cow ate well, yet her production declined to a fifth of her normal milk yield. Her chart shows that there was a slight reduction in her blood sugar when insulin was introduced into the blood stream. It seems furthermore likely that this sugar was not as available to milk secretion, since there appears to be more than a corresponding drop in the lactose content of the milk. The work of Luck et al. would seem to indicate that there should be a like drop in the amino acids of the blood. These two conditions would lead, according to the work of Cary and Meigs, to a reduction in the concentration of the nitrogen of the milk. Actually, in the experiment as it was performed, the nitrogen increased to a value about 40 per cent above normal. A somewhat similar conflict is noted in two of the other three insulin experiments where starvation accompanied insulin injection. To this extent it would seem that the factor deserving most emphasis in its immediate effect on milk yield is the energy available, and that the later and more secondary factor is the amino acid concentration of the blood. In the starvation experiments, the butter fat percentage of the milk rises rather uniformly with the duration of starvation. In the insulin experiments, however, the charts appear to show a marked reduction in this butter fat percentage immediately after the introduction of insulin. This is particularly noticed after the second and third injections. Since the dextrose of the blood tends to be reduced and made unavailable to the general physiological processes by the presence of the large excess of insulin, and since this reduction of the butter fat percentage is noted as an accompanying phenomenon, it would appear that the blood dextrose plays a part in the synthesis of milk fat as well as being the source of the milk lactose, possibly as a source of energy in converting body fat to butter fat. In this regard the results for the treatment of Cow 47 with phloridzin are of importance. As noted by others, the introduction of phloridzin causes a marked rise in the fat percentage of the milk. The lactose per cent is also higher than that noted in starvation. Since phloridzin, by lowering the threshold for the blood sugar, causes large quantities of it to be drained from the body through the urine, and therefore reduces the reserve supply, it follows that if the insulin hypotheses are correct we should expect an eventual lowering of the lactose and of the fat below the starvation level. During the last of the experiment this is what was actually observed. The effects of starvation and of insulin furnish concordant proof for the theory that the lactose of milk is derived from the sugar of the blood. The fact that the different constituents of the milk, the fat, the lactose, the nitrogen, and the ash, do not exactly parallel each other in their behavior throughout these experiments indicates that they have in all probability separate origin. This is particularly true of the butter fat percentage, which appears to have a rate of secretion which is more or less independent of the other constituents, and higher in amount. This result would fall in line with the conclusion of the writers in a previous paper in which it was indicated that the fat of the blood was very likely deposited in the udder as fat corresponding to body fat from which source it was metabolized into the fat of milk shortly before it was needed for milk secretion. The wide variation brought about in the constituents of the milk by the treatment all point to the conclusion that in milk secretion a balance is maintained between the osmotic pressure of the milk and of the blood. Thus when the sugar of the milk is reduced either through starvation or by insulin the ash constituents rise to compensate for this reduction and make the osmotic pressure of the milk similar to that of the blood. These results further appear to indicate that the salts and the sugars are more or less independent in their passage and metabolism into milk from the other constituents. These observations are therefore in line with those obtained by Jackson and Rothera (14) and by Davidson (15) in their brilliant experiments where they modified milk secretion by returning milk or milk sugars and salts to the udder. These experiments give direct proof for the conclusion that modifications of the blood of dairy cattle produce direct and predictable modification of the milk secreted.  相似文献   

14.
5—HT在调节大鼠泌乳中作用的研究   总被引:1,自引:0,他引:1  
在大鼠分娩次日,用5,6-DHT选择性损毁中枢5-HT能神经元,使下丘脑5-HT含量显著降低,吮乳诱发的催乳素分泌受到抑制,乳汁分泌显著减少,仔鼠生长迟缓。在泌乳已正常进行四天后作同样处理,仍有相似结果。提示5-HT参与泌乳的发动及维持。对5-HT的作用与催乳素和催产素的关系进行了讨论。  相似文献   

15.
The regulation of milk trace mineral homeostasis requires the temporal integration of three main processes, (A) mineral uptake into the secretory mammary epithelial cell (MEC); followed by (B) mineral secretion from MEC into the alveoli lumen of the mammary gland for sequestration in milk; and then (C) milk release in response to suckling. Trace mineral requirements of term infants are generally met by exclusive breast-feeding through about the first 6 months of life and although milk zinc (Zn), iron (Fe), and copper (Cu) concentrations are relatively refractory to maternal trace mineral status, they normally decline throughout lactation. Recently, Zn-, Fe- and Cu-specific transporters have been identified that regulate trace element uptake and efflux in various cell types; however, there is currently little information available regarding the processes through which the mammary gland regulates milk trace mineral transport. The homology of trace mineral transporters between species permits the utilization of rodent models to examine the regulation of mammary gland mineral transport. Therefore, we have used the lactating rat to determine changes in mammary gland Zn, Fe and Cu transporter expression and localization that occur throughout lactation and in response to maternal trace mineral deficiency in hope of elucidating some of the changes which occur during mammary gland trace element homeostasis and also may be occurring in lactating women.  相似文献   

16.
17.
The means by which calcium is transported into the milk produced by mammary glands is a poorly understood process. One hypothesis is that it occurs during exocytosis of secretory products via the Golgi pathway, consistent with the observation that the SPCA1 Ca2+-ATPase, which is expressed in the Golgi, is induced in lactating mammary tissue. However, massive up-regulation of the PMCA2bw plasma membrane Ca2+-ATPase also occurs during lactation and is more strongly correlated with increases in milk calcium, suggesting that calcium may be secreted directly via this pump. To examine the physiological role of PMCA2bw in lactation we compared lactating PMCA2-null mice to heterozygous and wild-type mice. Relative expression levels of individual milk proteins were unaffected by genotype. However, milk from PMCA2-null mice had 60% less calcium than milk from heterozygous and wild-type mice, the total milk protein concentration was lower, and an indirect measure of milk production (litter weights) suggested that the PMCA2-null mice produce significantly less milk. In contrast, lactose was higher in milk from PMCA2-null mice during early lactation, but by day 12 of lactation there were no differences in milk lactose between the three genotypes. These data demonstrate that the activity of PMCA2bw is required for secretion of much of the calcium in milk. This major secretory function represents a novel biological role for the plasma membrane Ca2+-ATPases, which are generally regarded as premier regulators of intracellular Ca2+.  相似文献   

18.
The effect of lactation on a number of enzymes involved in transmethylation reactions and the secretion of major methyl compounds into milk have been examined in sheep. The activities of hepatic phospholipid methyltransferase and 5-methyltetrahydrofolate-homocysteine methyltransferase were significantly higher in lactating ewes, compared with those in non-lactating ewes, while the activity of both hepatic and pancreatic glycine methyltransferase was significantly lower in the lactating state. No differences were observed in the activities of hepatic guanidoacetate methyltransferase, betaine-homocysteine methyltransferase and cystathionine beta-synthase on lactation. These results suggest that the extra demand for methyl groups for the secretion of methyl compounds in the milk is facilitated by enhancing the rate of de novo methyl group synthesis and lowering the rate of physiologically nonessential methylation.  相似文献   

19.
We have previously shown that protein restriction during lactation is associated with changes in iodine secretion into the milk and that a pup's serum leptin concentration was increased at the end of lactation. So, here we evaluate whether leptin treatment during lactation affects iodine transfer through the milk to the pups. Lactating rats were divided into two groups: the leptin (Lep) group, single injected with recombinant rat leptin (8 microg/100g of body weight, daily for 3 consecutive days), and the control (C) group that received the same volume of saline. We studied iodine transfer to the pups through the milk on Days 4, 12 and 21 of lactation. In those days, the dams were separated from their pups for 4 h. Then, the mothers received an injection of 131I (2.22x10(4) Bq ip) and the pups were allowed to nurse for 2 h. The animals were sacrificed 2 h later. Leptin, total serum T3 and total serum T4 concentrations were higher (P<.05) in pups of Lep mothers only on Day 4, suggesting a higher transfer of leptin through the milk at this period, probably with a direct stimulatory effect on thyroid hormone secretion. In other periods, however, even without a detectable increase in a pup's serum leptin concentration, maternal leptin administration increased the pup's thyroid iodine uptake (Day 12, 39%; Day 21, 34%), probably caused by a higher transfer of iodine through the milk, since they had a higher gastric content of 131I on Days 12 (31%) and 21 (128%).  相似文献   

20.
Numerous studies have documented prolactin regulation of a variety of brain functions, including maternal behavior, regulation of oxytocin neurons, regulation of feeding and appetite, suppression of ACTH secretion in response to stress, and suppression of fertility. We have observed marked changes in expression of prolactin receptors in specific hypothalamic nuclei during pregnancy and lactation. This has important implications for neuronal functions regulated by prolactin. In light of the high circulating levels of prolactin during pregnancy and lactation and the increased expression of prolactin receptors in the hypothalamus, many of these functions may be enhanced or exaggerated in the maternal brain. The adaptations of the maternal brain allow the female to exhibit the appropriate behavior to feed and nurture her offspring, to adjust to the nutritional and metabolic demands of milk production, and to maintain appropriate hormone secretion to allow milk synthesis, secretion, and ejection. This review aims to summarize the evidence that prolactin plays a key role in regulating hypothalamic function during lactation and to discuss the hypothesis that the overall role of prolactin is to organize and coordinate this wide range of behavioral and neuroendocrine adaptations during pregnancy and lactation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号