首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 290 毫秒
1.
Despite receiving increasing attention during the last few decades, the production of microalgal biofuels is not yet sufficiently cost-effective to compete with that of petroleum-based conventional fuels. Among the steps required for the production of microalgal biofuels, the harvest of the microalgal biomass and the extraction of lipids from microalgae are two of the most expensive. In this review article, we surveyed a substantial amount of previous work in microalgal harvesting and lipid extraction to highlight recent progress in these areas. We also discuss new developments in the biodiesel conversion technology due to the importance of the connectivity of this step with the lipid extraction process. Furthermore, we propose possible future directions for technological or process improvements that will directly affect the final production costs of microalgal biomass-based biofuels.  相似文献   

2.
Microalgae have the ability to mitigate CO2 emission and produce oil with a high productivity, thereby having the potential for applications in producing the third-generation of biofuels. The key technologies for producing microalgal biofuels include identification of preferable culture conditions for high oil productivity, development of effective and economical microalgae cultivation systems, as well as separation and harvesting of microalgal biomass and oil. This review presents recent advances in microalgal cultivation, photobioreactor design, and harvesting technologies with a focus on microalgal oil (mainly triglycerides) production. The effects of different microalgal metabolisms (i.e., phototrophic, heterotrophic, mixotrophic, and photoheterotrophic growth), cultivation systems (emphasizing the effect of light sources), and biomass harvesting methods (chemical/physical methods) on microalgal biomass and oil production are compared and critically discussed. This review aims to provide useful information to help future development of efficient and commercially viable technology for microalgae-based biodiesel production.  相似文献   

3.
The chloroplast is an essential organelle in microalgae for conducting photosynthesis, thus enabling the photoautotrophic growth of microalgae. In addition to photosynthesis, the chloroplast is capable of various biochemical processes for the synthesis of proteins, lipids, carbohydrates, and terpenoids. Due to these attractive characteristics, there has been increasing interest in the biotechnological utilization of microalgal chloroplast as a sustainable alternative to the conventional production platforms used in industrial biotechnology. Since the first demonstration of microalgal chloroplast transformation, significant development has occurred over recent decades in the manipulation of microalgal chloroplasts through genetic engineering. In the present review, we describe the advantages of the microalgal chloroplast as a production platform for various bioproducts, including recombinant proteins and high-value metabolites, features of chloroplast genetic systems, and the development of transformation methods, which represent important factors for gene expression in the chloroplast. Furthermore, we address the expression of various recombinant proteins in the microalgal chloroplast through genetic engineering, including reporters, biopharmaceutical proteins, and industrial enzymes. Finally, we present many efforts and achievements in the production of high-value metabolites in the microalgal chloroplast through metabolic engineering. Based on these efforts and advances, the microalgal chloroplast represents an economically viable and sustainable platform for biotechnological applications in the near future.  相似文献   

4.
Coimmobilization of the freshwater microalga Chlorella vulgaris and the plant-growth-promoting bacterium Azospirillum brasilense in small alginate beads resulted in a significantly increased growth of the microalga. Dry and fresh weight, total number of cells, size of the microalgal clusters (colonies) within the bead, number of microalgal cells per cluster, and the levels of microalgal pigments significantly increased. Light microscopy revealed that both microorganisms colonized the same cavities inside the beads, though the microalgae tended to concentrate in the more aerated periphery while the bacteria colonized the entire bead. The effect of indole-3-acetic acid addition to microalgal culture prior to immobilization of microorganisms in alginate beads partially imitated the effect of A. brasilense. We propose that coimmobilization of microalgae and plant-growth-promoting bacteria is an effective means of increasing microalgal populations within confined environments.  相似文献   

5.
Microalgal cultures are a clean and sustainable means to use solar energy for CO2 fixation and fuel production. Microalgae grow efficiently and are rich in oil, but recovering that oil is typically expensive and consumes much energy. Therefore, effective and low‐cost techniques for microalgal disruption and oil or lipid extraction are required by the algal biofuel industry. This study introduces a novel technique that uses active extracellular substances to induce microalgal cell disruption. A bacterium indigenous to Taiwan, Bacillus thuringiensis, was used to produce the active extracellular substances, which were volatile compounds with high thermal stability. Approximately 74% of fresh microalgal cells were disrupted after a 12‐h treatment with the active extracellular substances. Algal lipid extraction efficiency was improved and the oil extraction time was decreased by approximately 37.5% compared with the control treatment. The substances effectively disrupted fresh microalgal cells but not dehydrated microalgal cells. An analysis of microalgal DNA from fresh cells after disruption treatment demonstrated typical DNA laddering, indicating that disruption may have resulted from programmed cell death. This study revealed that biological treatments are environmentally friendly methods for increasing microalgal lipid extraction efficiency, and introduced a microalgal cell self‐disruption mechanism.  相似文献   

6.
Microalgae are considered a promising source of oil for biodiesel production. This work reports an estimation method of oil content inside living microalgal cells by visualization and image processing techniques. This approach was used to analyze the time course of oil accumulation patterns in Nile Red-stained microalgal cells of Scenedesmus sp. cultivated in nitrogen-deficient medium used to induce oil accumulation in microalgal cells. Nile Red staining is a widely used technique for studying oil content of microalgal cells. The intracellular oil content was estimated by mathematically evaluating the oil volume inside the stained cell. This novel visualization approach has the potential to be used in ex vivo studies of oil content at the level of single microalgal cells. This method can also be applied to other types of oil-producing microorganisms because of its accuracy, precision, and reduction in the time and effort required for optimization.  相似文献   

7.
To improve the study of mixed microalgal populations, three naturally evolved marine microalgal cultures were subjected to a light crushing mechanical treatment using a silicon spatula coupled with zymolyase treatment at four concentrations: 5, 10, 20 and 25 U/ml, for 15, 30, 45 and 60 min before being observed under a microscope. The enzyme concentration of 20 U/ml after 45 min reduces the size of macroscopic microalgal aggregates and improves the microscopic observation of the different microalgal species comprising the population. There was no improvement using the higher enzyme concentration. This paper proposes a new approach to the study of naturally evolved microalgal populations which is useful for distinguishing the morphology of the different species present in the population and allowing for the identification by classical keys, and also to obtain a pure culture from an inoculum of mixed species by using a micromanipulator for cell counting.  相似文献   

8.
The utility of microalgal biomass and bioproducts depends on long-term maintenance of certain physiological or biochemical features of the species. While unique characteristics may not be durably maintained with general subculture, cryopreservation methods better prevent alterations from desired characteristics. Post-thaw viability is critical to establishing microalgal cultures, and there is a critical need to effectively and rapidly evaluate microalgal viability after the post-thawing process. In the present study, we developed a rapid assay based on the change of fluorescence ratio to determine microalgal viability post-thaw. It was shown that the assessment of microalgal viability by the fluorescence ratio method correlated well with that of the FDA-staining (R2 = 0.978) and regrowth method (R2 = 0.976), demonstrating that the present method could be applied in the high-throughput detection of viability of microalgal strains. Subsequent to establishing this method, we aimed to find out optimal cryopreservation protocol for each strain from a group of 125 microalgal strains. The viability of these strains under different treatments was quickly evaluated by the fluorescence ratio method. Of these strains, 95 attained post-thaw viability over 60%. DMSO was a suitable cryoprotectant for most strains at a concentration ≤10%. Based on the dataset, the relative contribution of 3 variables-genus, cryoprotectants and concentration to post-viability was analyzed with the Random Forest (RF) classification method. All variables together could explain 97.8% of the viability, and type and concentration of cryoprotectant could explain 59.1% in Chlorophyta. This study provided a new approach for viability assay and demonstrated that this method can facilitate to find out the optimal protocols for cryopreservation of microalgal strains.  相似文献   

9.
微藻细胞可以积累大量油脂、蛋白质、多糖、色素、不饱和脂肪酸等物质,在能源、食品、饵料、保健品及药品等行业有巨大的应用价值。然而,微藻在传统光自养模式下很难实现高密度培养来大量生产这些重要的物质,进而限制了微藻的实际应用。相反,微藻在异养模式下生长速度快、生物质浓度高,可以短时间内获得大量微藻生物质。因此,异养高密度培养微藻具备大规模、高效率培养微藻生产目标产物的巨大潜力。阐述微藻异养培养的优缺点及相应技术难点的解决思路、影响微藻异养生长及目标产物积累的主要营养因子和环境因子、微藻异养高密度培养的方式及微藻异养高密度培养的当前发展水平。结合文献报道分析微藻异养高密度培养的四个具有极大发展潜力的发展方向,以期更好地利用异养模式来高效率、低成本培养微藻生产大量目标产物,满足上述多个行业对微藻原材料的巨大需求,从而加速微藻产业的发展。  相似文献   

10.
微藻培养过程的光特性研究进展   总被引:1,自引:0,他引:1  
微藻培养过程中光的吸收、衰减以及光暗循环等特性是影响微藻的生长速度及其产量的重要因素。本文分析了微藻的光吸收过程、光在微藻培养液中的衰减特性以及微藻培养过程中的光暗循环特性,重点综述了国内外各类光生物反应器中光特性的研究进展,并对其发展方向进行了展望,为微藻培养光生物反应器的设计提供参考依据。  相似文献   

11.
Coimmobilization of the freshwater microalga Chlorella vulgaris and the plant-growth-promoting bacterium Azospirillum brasilense in small alginate beads resulted in a significantly increased growth of the microalga. Dry and fresh weight, total number of cells, size of the microalgal clusters (colonies) within the bead, number of microalgal cells per cluster, and the levels of microalgal pigments significantly increased. Light microscopy revealed that both microorganisms colonized the same cavities inside the beads, though the microalgae tended to concentrate in the more aerated periphery while the bacteria colonized the entire bead. The effect of indole-3-acetic acid addition to microalgal culture prior to immobilization of microorganisms in alginate beads partially imitated the effect of A. brasilense. We propose that coimmobilization of microalgae and plant-growth-promoting bacteria is an effective means of increasing microalgal populations within confined environments.  相似文献   

12.
Microalgal lipids are highly promising feedstocks for biofuel production. Microalgal lipids, especially triacylglycerol, and practical applications of these compounds have received increasing attention in recent years. For the commercial use of microalgal lipids to be feasible, many fundamental biological questions must be addressed based on detailed studies of algal biology, including how lipid biosynthesis occurs and is regulated. Here, we review the current understanding of microalgal lipid biosynthesis, with a focus on the underlying regulatory mechanisms. We also present possible solutions for overcoming various obstacles to understanding the basic biology of microalgal lipid biosynthesis and the practical application of microalgae-based lipids. This review will provide a theoretical reference for both algal researchers and decision makers regarding the future directions of microalgal research, particularly pertaining to microalgal-based lipid biosynthesis.  相似文献   

13.
Extraction of oil from microalgae for biodiesel production: A review   总被引:2,自引:0,他引:2  
The rapid increase of CO(2) concentration in the atmosphere combined with depleted supplies of fossil fuels has led to an increased commercial interest in renewable fuels. Due to their high biomass productivity, rapid lipid accumulation, and ability to survive in saline water, microalgae have been identified as promising feedstocks for industrial-scale production of carbon-neutral biodiesel. This study examines the principles involved in lipid extraction from microalgal cells, a crucial downstream processing step in the production of microalgal biodiesel. We analyze the different technological options currently available for laboratory-scale microalgal lipid extraction, with a primary focus on the prospect of organic solvent and supercritical fluid extraction. The study also provides an assessment of recent breakthroughs in this rapidly developing field and reports on the suitability of microalgal lipid compositions for biodiesel conversion.  相似文献   

14.
营养强化时褶皱臂尾轮虫对饵料微藻的摄食   总被引:2,自引:0,他引:2  
选取适宜浓度利用单种微藻和混合微藻对轮虫进行营养强化,采用实验生态学方法研究了轮虫滤水率和摄食率的动态变化.结果表明:微藻浓度、微藻种类和培养时间均对轮虫的滤水率和摄食率有显著影响;轮虫对几种单种微藻的滤水率和摄食率均随培养时间的延长而下降,在实验条件下,6h内轮虫对3种微藻的滤水率大小顺序为小球藻>球等鞭金藻>牟氏角毛藻,12h内轮虫对3种和,微藻的滤水率大小顺序则为球等鞭金藻>小球藻>牟氏角毛藻;轮虫在混合微藻中的选择顺序为球等鞭金藻>小球藻>牟氏角毛藻.  相似文献   

15.
The extraction of lipids from microalgal cells using ultrasonic and microwave pretreatments is mechanistically evaluated based on the distribution of cell fragments, the lipid content analysis, the scanning electron microscopic (SEM) observation of ruptured microalgal cells, and the analysis of fatty acids. The results indicate that microwave pretreatment extracts lipids more rapidly and efficiently as compared to ultrasonic pretreatment. The rupture of cells in the microwave process is due to the tremendous pressure caused by the rapid heating of the moisture inside the microalgal cells, whereas in the ultrasonic process the microalgal cells are ruptured by shock waves from cavitation bubbles outside the cells. The fatty acid composition of the respective lipids extracted via the two types of pretreatment did not vary significantly from one another. These results demonstrate that the microwave process is rapid and more effective than the ultrasonic process for lipid extraction from microalgae.  相似文献   

16.
Summary The factors causing the cessation of growth and decline of microalgal communities on Antarctic fell-field soils during late summer were investigated. Physical and chemical amendments were applied within small enclosures and the size and taxonomic composition of the communities assessed. Most treatments had no effect on the microalgal communities or individual taxa. The addition of calcium nitrate to the soil either singly or as part of a complete growth medium promoted growth of all taxa studied on most sites. As the cation was naturally present in excess in the soil it is concluded that growth of the microalgal communities during late summer was nitrogen-limited.  相似文献   

17.
To promote the economic feasibility of Nannochloropsis oculata, efficacy of using polyethylene glycol (PEG) to increase microalgal growth and lipid accumulation was investigated. We first examined the effects of PEG concentrations on microalgal growth using 0–5 % (w/v) PEG-6000, and followed by exploring the effects of PEG molecular weights (400, 600, 2,000, 4,000, 6,000, and 20,000) on microalgal growth, size, as well as on yields of biomass, total lipids, and eicosapentaenoic acid. In addition, the capacity of PEG to reduce the effect of oxygen inhibition on microalgal growth was also investigated to evaluate its adaptability for use in large-scale and closed setting. Our results showed that PEG-induced osmotic stress (Π) in the range of 2.465–2.472 MPa can raise microalgal growth. The PEG with higher molecular weight exhibited greater efficacy of growth promotion but less lipid content under equal concentration. In this study, 0.5 % (w/v) PEG-20000 (Π = 2.466 MPa) remarkably enhanced microalgal growth without interference of intracellular lipid productivity and cellular size, yielding >50 % (w/w) increases in biomass, total lipid, and eicosapentaenoic acid amounts after 7 days that provided the optimal condition for microalgal cultivation. These positive effects possibly resulted from the moderate enhancement of osmotic stress in the medium and stronger chaotrope-like behavior from higher molecular weight PEG. With further verification that 0.5 % (w/v) PEG-20000 enabled to reduce the effect of oxygen inhibition on microalgal growth, the PEG-20000-mediated cultivation offers a feasible means for mass culture of N. oculata in closed setting.  相似文献   

18.
Journal of Applied Phycology - In this paper the preparations are described to develop a production of oil rich microalgal biomass under south European conditions. Ten microalgal species were...  相似文献   

19.
Multi-parameter flow cytometry was used to monitor cell intrinsic light scatter, viability, and lipid content of Chlorella protothecoides cells grown in shake flasks. Changes in the right angle light scatter (RALS) and forward angle light scatter (FALS) were detected during the microalgal growth, which were attributed to the different microalgal cell cycle stages. The proportion of cells not stained with PI (cells with intact cytoplasmic membrane) was high (> 90%) during the microalgal growth, even in the latter stationary phase, suggesting that the microalgal cells built-up storage materials which allowed them to survive under nutrient starvation, maintaining their cytoplasmic membranes intact. A high correlation between the Nile Red fluorescence intensity measured by flow cytometry and total lipid content assayed by the traditional lipid extraction method was found for this microalga, making this method a suitable and quick technique for the screening of microalgal strains for lipid production, optimization of biofuel production bioprocesses, and scale-up studies. The highest oil content (∼28% w/w dry cell weight, estimated by flow cytometry) was observed in the latter stationary phase. In addition, C. protothecoides oil also depicted the adequate fatty acid methyl ester composition for biodiesel purposes at this growth phase, suggesting that the microalgal oil produced during the latter stationary phase could be an adequate substitute for diesel fuel. Medium growth optimization for enhancement of microalgal oil production is now in progress, using the multi-parameter approach.  相似文献   

20.
The comprehension of microbial interactions is one of the key challenges in marine microbial ecology. This study focused on exploring chemical interactions between the toxic dinoflagellate Prorocentrum lima and a filamentous fungal species, Aspergillus pseudoglaucus, which has been isolated from the microalgal culture. Such interspecies interactions are expected to occur even though they were rarely studied. Here, a co-culture system was designed in a dedicated microscale marine-like condition. This system allowed to explore microalgal–fungal physical and metabolic interactions in presence and absence of the bacterial consortium. Microscopic observation showed an unusual physical contact between the fungal mycelium and dinoflagellate cells. To delineate specialized metabolome alterations during microalgal–fungal co-culture metabolomes were monitored by high-performance liquid chromatography coupled to high-resolution mass spectrometry. In-depth multivariate statistical analysis using dedicated approaches highlighted (1) the metabolic alterations associated with microalgal–fungal co-culture, and (2) the impact of associated bacteria in microalgal metabolome response to fungal interaction. Unfortunately, only a very low number of highlighted features were fully characterized. However, an up-regulation of the dinoflagellate toxins okadaic acid and dinophysistoxin 1 was observed during co-culture in supernatants. Such results highlight the importance to consider microalgal–fungal interactions in the study of parameters regulating toxin production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号