首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Visual purple solutions are prepared under such conditions that the bleaching reaction is irreversible. 2. A method is described for the colorimetric estimation of very small quantities of visual purple. By this means the kinetics of the bleaching reaction are investigated. 3. The results show that the course of the decomposition follows that of a monomolecular reaction, without any measurable period of induction or after effect.  相似文献   

2.
The absorption spectra of visual purple solutions extracted by various means were measured with a sensitive photoelectric spectrophotometer and compared with the classical visual purple absorption spectrum. Hardening the retinas in alum before extraction yielded visual purple solutions of much higher light transmission in the blue and violet, probably because of the removal of light-dispersing substances. Re-extraction indicated that visual purple is more soluble in the extractive than are the other colored retinal components. However, the concentration of the extractive did not affect the color purity of the extraction but did influence the keeping power. This suggests a chemical combination between the extractive and visual purple. The pH of the extractive affected the color purity of the resulting solution. Over the pH range from 5.5 to 10.0, the visual purple color purity was greatest at the low pH. Temperature during extraction was also effective, the color purity being greater the higher the temperature, up to 40°C. Drying and subsequent re-dissolving of visual purple solutions extracted with digitalin freed the solution of some protein impurities and increased its keeping power. Dialysis against distilled water seemed to precipitate visual purple from solution irreversibly. None of the treatments described improved the symmetry of the unbleached visual purple absorption spectrum sufficiently for it to resemble the classical absorption spectrum. Therefore it is very likely that the classical absorption spectrum is that of the light-sensitive group only and that the absorption spectra of our purest unbleached visual purple solutions represent the molecule as a whole.  相似文献   

3.
It is shown that the velocity of bleaching of visual purple by light, under comparable conditions of concentration, volume, and surface exposed, is directly proportional to the intensity.  相似文献   

4.
1. The accumulation of visual purple in the retina after bleaching by light has been studied in the intact eye of the frog. The data show that duration and intensity of light adaptation, which influence the course of human dark adaptation as measured in terms of visual threshold, have a similar influence on the course of visual purple regeneration. 2. At 25°C. frogs which have been light adapted to 1700 millilamberts and then placed in the dark, show an increase in visual purple concentration which begins immediately and continues for 70 minutes until a maximum concentration is attained. The increase, although beginning at once, is slow at first, then proceeds rapidly, and finally slows up towards the end. Frogs which have been adapted to 9500 millilamberts show essentially the same phenomenon except that the initial slow period is strongly delayed so that almost no visual purple is formed in the first 10 minutes. 3. At 15°C. the initial delay in visual purple regeneration occurs following light adaptation to both 1700 and 9500 millilamberts. The delay is about 10 minutes and is slightly longer following the higher light adaptation. 4. The entire course of visual purple accumulation in the dark takes longer at the lower temperature than at the higher. The temperature coefficient for 10°C. is about 1.8. 5. In contrast to the behavior of the isolated retina which has small amounts of vitamin A and large amounts of retinene immediately after exposure to light, the intact eye has large amounts of vitamin A and little retinene after exposure to light for 10 minutes. In the intact eye during dark adaptation, the amount of vitamin A decreases markedly while retinene decreases only slightly in amount. If retinene is formed in the intact eye, the change from retinene to vitamin A must therefore occur rapidly in contrast to the slow change in the isolated retina. 6. The course of visual purple regeneration may be described by the equation for a first order autocatalyzed reaction. This supposes that the regeneration of visual purple is catalyzed by visual purple itself and accounts for the sigmoid shape of the data.  相似文献   

5.
1. Measurements of visual purple regeneration in solution have been made by a procedure which minimized distortion of the results by other color changes so that density changes caused by the regenerating substance alone are obtained. 2. Bleaching a visual purple solution with blue and violet light causes a greater subsequent regeneration than does an equivalent bleaching with light which lacks blue and violet. This is due to a photosensitive substance which has a gradually increasing effective absorption toward the shorter wavelengths. It is uncertain whether this substance is a product of visual purple bleaching or is present in the solution before illumination. 3. The regeneration of visual purple measured at 560 mµ is maximal at about pH 6.7 and decreases markedly at more acid and more alkaline pH''s. 4. The absorption spectrum of the regenerating material shows only a concentration change during the course of regeneration, but has a higher absorption at the shorter wavelengths than has visual purple before illumination. 5. Visual purple extractions made at various temperatures show no significant difference in per cent of regeneration. 6. The kinetics of regeneration is usually that of a first order process. Successive regenerations in the same solution have the same velocity constant but form smaller total amounts of regenerated substance. 7. In vivo, the frog retina shows no additional oxygen consumption while visual purple is regenerating.  相似文献   

6.
Visual purple from winter frogs shows an intermediate yellow color during bleaching by light; summer extractions do not. This seasonal effect can be duplicated by variations in the hydrogen ion concentration and in the temperature of the solutions. Increasing the pH approximates the summer condition, while decreasing the pH approximates the winter condition. Temperature has no effect on the bleaching of alkaline solutions but greatly influences acid solutions. At low temperatures the bleaching of add solutions resembles the winter condition, while at higher temperatures it resembles the summer condition. A photic decomposition product of frog retinal extractions is an acid-base indicator: it is yellow in acid and colorless in alkaline solution. Its color is not dependent upon light. The hydrogen ion concentration of visual purple solutions does not change under illumination, nor is there a difference in the pH of summer and winter extractions. Bile salt extractions of visual purple are usually slightly acid. The conflicting results of past workers regarding the appearance of "visual yellow" may be due to seasonal variation with its differences in temperature, or to the presence of base in the extractions. It is also possible that vitamin A may be a factor in the seasonal variation. The photic decomposition of visual purple in bile salts solution, extracted from summer frogs, follows the kinetics of a first order reaction. Visual purple from winter frogs does not conform to first order kinetics. Photic decomposition of alkaline, winter visual purple extractions also follows a first order equation. Acid, winter extractions appear to conform to a second order equation, but this is probably an artefact due to interference by the intermediate yellow.  相似文献   

7.
1. After a consideration of the existing data and of the sources of error involved, an arrangement of apparatus, free from these errors, is described for measuring the relative energy necessary in different portions of the spectrum in order to produce a colorless sensation in the eye. 2. Following certain reasoning, it is shown that the reciprocal of this relative energy at any wave-length is proportional to the absorption coefficient of a sensitive substance in the eye. The absorption spectrum of this substance is then mapped out. 3. The curve representing the visibility of the spectrum at very low intensities has exactly the same shape as that for the visibility at high intensities involving color vision. The only difference between them is their position in the spectrum, that at high intensities being 48 µµ farther toward the red. 4. The possibility is considered that the sensitive substances responsible for the two visibility curves are identical, and reasons are developed for the failure to demonstrate optically the presence of a colored substance in the cones. The shift of the high intensity visibility curve toward the red is explained in terms of Kundt''s rule for the progressive shift of the absorption maximum of a substance in solvents of increasing refractive index and density. 5. Assuming Kundt''s rule, it is deduced that the absorption spectrum of visual purple as measured directly in water solution should not coincide with its position in the rods, because of the greater density and refractive index of the rods. It is then shown that, measured by the position of the visibility curve at low intensities, this shift toward the red actually occurs, and is about 7 or 8 µµ in extent. Examination of the older data consistently confirms this difference of position between the curves representing visibility at low intensities and those representing the absorption spectrum of visual purple in water solution. 6. It is therefore held as a possible hypothesis, capable of direct, experimental verification, that the same substance—visual purple—whose absorption maximum in water solution is at 503 µµ, is dissolved in the rods where its absorption maximum is at 511 µµ, and in the cones where its maximum is at 554 µµ (or at 540 µµ, if macular absorption is taken into account, as indeed it must be).  相似文献   

8.
紫膜与溶剂的相互作用   总被引:1,自引:1,他引:0  
本文研究了溶剂正己烷,正十六烷,甲苯和二甲基甲酰胺(DMF dimethyl formamide)与紫膜的相互作用.吸收光谱,园二色谱和紫膜光循环中间产物M412的动力学过程的测量表明,在不同条件下,溶剂与紫膜能相互作用而影响到紫膜的光谱特性和光化学循环动力学过程.结果说明,在制作紫膜LB膜时,正己烷和正十六烷是合适的,使用二甲基甲酰胺时必须防止强光照射,甲苯则不能采用.  相似文献   

9.
THE VISUAL CELLS AND VISUAL PIGMENT OF THE MUDPUPPY, NECTURUS   总被引:8,自引:4,他引:4       下载免费PDF全文
Electron microscopy of the visual cells of the mudpuppy Necturus have revealed several new or hitherto neglected features of organization: (a) A system of deeply staining micelles in virtually crystalline array, probably located in the lamellae of the rod outer segments. These particles may contain the visual pigment, porphyropsin. Counts of the micelles, and microspectrophotometric measurements of porphyropsin in the retina and single rods yield the estimate that each lamellar micelle may contain about 50 molecules of porphyropsin. (b) Systems of about 30 cytoplasmic filaments (here called dendrites), continuous with the cytoplasm of the inner segment, and standing like a palisade about the outer segments of the rods and cones. In the rods, one such filament stands in the mouth of each of the approximately 30 deep fissures that carve the outer segment into a radial array of lobules. (c) A system of deeply staining particles in the membranes of the dendrites, and another in the membranes of the pigment epithelial processes. It is suggested that these may have a part in interchanges of material with the outer segments. The ciliary process is found to penetrate more deeply than is commonly supposed into the outer segments of the rods and cones. The edge of each double-membrane disc in rods forms a differentiated rim structure, both around the disc circumference and bordering the fissures. These anatomical arrangements are summarized in Figs. 13 and 14, and the relevant measurements in Table I. The dilution of visual pigment in Necturus rods and cones and a general consideration of their microstructures make it seem unlikely that such typically solid state processes as exciton migration or photoconduction can transport the effects of light far from the site of absorption. Excitation must, therefore, be conveyed to the receptor as a whole by some axial structure. Among axial structures, the plasma membrane is most likely to be the site of nervous excitation. The ciliary process probably plays its main role in the embryogenesis and regeneration of outer segments; and the dendrites and pigment epithelial processes in exchanges of material with the outer segments and perhaps with one another.  相似文献   

10.
研究了中性红再生紫膜从先适应状态到暗适应状态的反应及再生紫膜中中性红的光吸收变化。实验结果说明紫膜上的金属离子结合位点可能深入膜内的质子通道,与构成质子通道的一些重要氨基酸残基相互作用。紫膜经去离子化处理变成蓝膜后,带有正电荷的质子化中性红也可以占据此金属离子结合位点,使蓝膜再生为紫膜。但金属离子与结合位点具有更强的亲和力,使蓝膜再生为紫膜的能力比质子化中性红强。  相似文献   

11.
1. The reality of a chemical cycle proposed to describe the rhodopsin system is tested with dark adaptation measurements. 2. The first few minutes of rod dark adaptation are rapid following short, slower following long irradiation. As dark adaptation proceeds, the slow process grows more prominent, and occupies completely the final stages of adaptation. 3. Light adaptation displays similar duality. As the exposure to light of constant intensity lengthens, the visual threshold rises, and independently the speed of dark adaptation decreases. 4. These results conform with predictions from the chemical equations.  相似文献   

12.
1. Bees respond by a characteristic reflex to a movement in their visual field. By confining the field to a series of parallel dark and luminous bars it is possible to determine the size of bar to which the bees respond under different conditions and in this way to measure the resolving power or visual acuity of the eye. The maximum visual acuity of the bee is lower than the lowest human visual acuity. Under similar, maximal conditions the fineness of resolution of the human eye is about 100 times that of the bee. 2. The eye of the bee is a mosaic composed of hexagonal pyramids of variable apical angle. The size of this angle determines the angular separation between adjacent ommatidia and therefore sets the structural limits to the resolving power of the eye. It is found that the visual angle corresponding to the maximum visual acuity as found experimentally is identical with the structural angular separation of adjacent ommatidia in the region of maximum density of ommatidia population. When this region of maximum ommatidia population is rendered non-functional by being covered with an opaque paint, the maximum visual acuity then corresponds to the angular separation of those remaining ommatidia which now constitute the maximum density of population. 3. The angular separation of adjacent ommatidia is much smaller in the vertical (dorso-ventral) axis than in the horizontal (anterio-posterior) axis. The experimentally found visual acuity varies correspondingly. From this and other experiments as well as from the shape of the eye itself, it is shown that the bee''s eye is essentially an instrument for uni-directional visual resolution, functional along the dorso-ventral axis. The resolution of the visual pattern is therefore determined by the vertical angular separation of those ocular elements situated in the region of maximum density of ommatidia population. 4. The visual acuity of the bee varies with the illumination in much the same way that it does for the human eye. It is low at low illuminations; as the intensity of illumination increases it increases at first slowly and then rapidly; and finally at high intensities it becomes constant. The resolving power of a structure like the bee''s eye depends on the distance which separates the discrete receiving elements. The data then mean that at low illuminations the distance between receiving elements is large and that this distance decreases as the illumination increases. Since such a moving system cannot be true anatomically it must be interpreted functionally. It is therefore proposed that the threshold of the various ommatidia are not the same but that they vary as any other characteristic of a population. The visual acuity will then depend on the distance apart of those elements whose thresholds are such that they are functional at the particular illumination under investigation. Taking due consideration of the angular separation of ommatidia it is possible to derive a distribution curve for the thresholds of the ommatidia which resembles the usual probability curves, and which describes the data with complete fidelity.  相似文献   

13.
Since its introduction into the analysis of foodstuffs, sensory analysis has been applied in several contexts. This work seeks to widen the field of sensory analysis to include ornamental plants and to characterize their esthetic quality. Using the rosebush as a plant model, an attribute generation protocol is proposed in order to develop a conventional profile of such products. Further to statistical treatments aiming to verify the unambiguity, discrimination and independence of these attributes, a reduced list of 18 attributes has been set up. These attributes make up the very core of the conventional profiling studies currently undertaken .

PRACTICAL APPLICATIONS


The generation of a list of attributes that is not too long, in order to describe plants as exhaustively as possible, is one of the first steps of extending sensory analysis methods to ornamental horticulture. This list will be used to train a panel of assessors to characterize the rosebush.
Two applications are in progress. The first application consists of evaluating the impact of nitrogen nutrition on the visual quality of the rosebush. The second has the objective of determining which characteristics influence consumer preferences.  相似文献   

14.
本文通过行为实验及计算机模拟进一步证明,蝇视系统的自发模式辨别可以看作是图形—背景分辨的特殊情况.关键在于蝇的模式分辨是由运动检测器实现的.运动检测器不仅对模式速度反应,也对模式的结构特性反应.本文提出,人视系统的模式分辨也可能部分地由运动检测器来实现.  相似文献   

15.
1. Bees respond by a characteristic reflex to a movement in their visual field. By confining the field to a series of parallel stripes of different brightness it is possible to determine at any brightness of one of the two stripe systems the brightness of the second at which the bee will first respond to a displacement of the field. Thus intensity discrimination can be determined. 2. The discriminating power of the bee''s eye varies with illumination in much the same way that it does for the human eye. The discrimination is poor at low illumination; as the intensity of illumination increases the discrimination increases and seems to reach a constant level at high illuminations. 3. The probable error of See PDF for Equation decreases with increasing I exactly in the same way as does See PDF for Equation itself. The logarithm of the probable error of ΔI is a rectilinear function of log I for all but the very lowest intensities. Such relationships show that the measurements exhibit an internal self-consistency which is beyond accident. 4. A comparison of the efficiency of the bee''s eye with that of the human eye shows that the range over which the human eye can perceive and discriminate different brightnesses is very much greater than for the bee''s eye. When the discrimination power of the human eye has reached almost a constant maximal level the bee''s discrimination is still very poor, and at an illumination where as well the discrimination power of the human eye and the bee''s eye are at their best, the intensity discrimination of the bee is twenty times worse than in the human eye.  相似文献   

16.
17.
Ron W. Summers 《Ostrich》2013,84(2):167-173
Summers, R. W. 1994. The migration patterns of the Purple Sandpiper Calidris maritima. Ostrich 65: 167–173.

The Purple Sandpiper breeds largely in the Arctic, and winters (boreal season) on the rocky shores of the north Atlantic, further north than any other sandpiper. As the populations from Canada, Greenland, Iceland, Svalbard, Norway and Russia differ in wing and bill lengths it is possible to match measurements taken from breeding birds with samples of birds caught in winter. Ringing recoveries, especially from colour marked birds, have also helped to determine migration routes and wintering areas. Four populations move to the nearest ice-free coast. Two populations move south of the nearest ice-free coast, being replaced by larger birds from a more northerly population (“chain migration”). Only the north Canadian population is believed to migrate a long distance, “leap-frogging” other winter populations. These patterns are discussed in relation to theories for the migration patterns of waders.  相似文献   

18.
1. A study of the historical development of the Weber-Fechner law shows that it fails to describe intensity perception; first, because it is based on observations which do not record intensity discrimination accurately, and second, because it omits the essentially discontinuous nature of the recognition of intensity differences. 2. There is presented a series of data, assembled from various sources, which proves that in the visual discrimination of intensity the threshold difference ΔI bears no constant relation to the intensity I. The evidence shows unequivocally that as the intensity rises, the ratio See PDF for Equation first decreases and then increases. 3. The data are then subjected to analysis in terms of a photochemical system already proposed for the visual activity of the rods and cones. It is found that for the retinal elements to discriminate between one intensity and the next perceptible one, the transition from one to the other must involve the decomposition of a constant amount of photosensitive material. 4. The magnitude of this unitary increment in the quantity of photochemical action is greater for the rods than for the cones. Therefore, below a certain critical illumination—the cone threshold—intensity discrimination is controlled by the rods alone, but above this point it is determined by the cones alone. 5. The unitary increments in retinal photochemical action may be interpreted as being recorded by each rod and cone; or as conditioning the variability of the retinal cells so that each increment involves a constant increase in the number of active elements; or as a combination of the two interpretations. 6. Comparison with critical data of such diverse nature as dark adaptation, absolute thresholds, and visual acuity shows that the analysis is consistent with well established facts of vision.  相似文献   

19.
酰化对紫膜结构的影响   总被引:2,自引:1,他引:1  
在很宽波长和PH范围内用紫外及可见区光吸收、圆二色及共振拉曼测定了酰化诱导的紫膜溶液的光谱变化。结构表明:酰化引起的表面电位的改变诱导了蛋白局部构象的改变。这种改变在很大程度上离域到整个蛋白分子中而影响了视黄醛结合位点的性质及生色团的结构,从而导致可观察的光谱变化。与未酰化紫膜比较,紫膜对PH的稳定性减小了。  相似文献   

20.
人胎视皮质皮质下层NPY-IR神经元的发育   总被引:1,自引:0,他引:1  
本文用免疫组化方法研究了16周至足月人胎视皮质皮质下层NPY-IR神经元的发育。各胎龄视皮质SP层内均有NPY-IR神经元分布。从16周至26周,NPY-IR神经元密度逐渐增高并于26周达高峰;32周以后阳性神经元密度随胎龄增长而下降。人胎视皮质SP层NPY-IR神经元形态也随胎龄而变化;20周以前,NPY-IR神经元大多是胞体较小,突起短而少的未分化神经元、SP层内NPY-IR纤维少。20周以后,NPY-IR神经元胞体增大,突起增多、变长;多极和双极、双簇神经元随胎龄增长而增多;SP层内的NPY-IR纤维大量增加,部分纤维穿入皮质板。32周以后,多极NPY-IR神经元逐渐减少,双极双簇神经元所占比例相对增高。NPY免疫组化结合NADPH-d组化显示人胎视皮质SP层大多数NPY-IR神经元同时呈NOS阳性。本研究观察到人胎视皮质SP层内NPY-IR神经元发育可分为发生、成熟和退化三个阶段。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号