首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to understand the thermodynamic state of simple salts in living cells, the mean activity coefficients of LiCl, NaCl, KC1, RbCl, CsCl were determined in concentrated isoionic bovine serum albumin (BSA) solutions by use of the EMF method with ion exchange membrane electrodes. The protein concentration range extended up to 22 wt %, whereas the salt concentration was kept constant at 0.1 mole per kilogram water. These solutions may be regarded as crude but appropriate model systems for the cytoplasm of cells as far as type and magnitude of the macromolecular component influence on the chemical potential of the salts is concerned. The mean stoichiometric activity coefficients of the alkali chlorides in the isoionic BSA solutions decreased linearly with the protein molality; this decrease, however, did not exceed ca. 10% compared with the pure 0.1 molal salt solutions. Only very small differences in the behaviour of the different alkali chlorides were observed. The results may be interpreted by the superposition of the effects of specific Cl? ion binding to BSA and BSA bound “non-solvent” water with probably electrostatic long range interactions of the BSA(Cl?)v polyions with the salt ions in solution. The resulting mean activity coefficients, corrected for ion binding and non-solvent water, showed a very slight linear dependence on the protein concentration. The departure from the value in the pure 0.1 molal salt solutions did not exceed ± 2%.  相似文献   

2.
1. It is shown that collodion membranes which have received one treatment with a 1 per cent gelatin solution show for a long time (if not permanently) afterwards a different osmotic behavior from collodion membranes not treated with gelatin. This difference shows itself only towards solutions of those electrolytes which have a tendency to induce a negative electrification of the water particles diffusing through the membrane, namely solutions of acids, acid salts, and of salts with trivalent and tetravalent cations; while the osmotic behavior of the two types of membranes towards solutions of salts and alkalies, which induce a positive electrification of the water particles diffusing through the membrane, is the same. 2. When we separate solutions of salts with trivalent cation, e.g. LaCl3 or AlCl3, from pure water by a collodion membrane treated with gelatin, water diffuses rapidly into the solution; while no water diffuses into the solution when the collodion membrane has received no gelatin treatment. 3. When we separate solutions of acid from pure water by a membrane previously treated with gelatin, negative osmosis occurs; i.e., practically no water can diffuse into the solution, while the molecules of solution and some water diffuse out. When we separate solutions of acid from pure water by collodion membranes not treated with gelatin, positive osmosis will occur; i.e., water will diffuse rapidly into the solution and the more rapidly the higher the valency of the anion. 4. These differences occur only in that range of concentrations of electrolytes inside of which the forces determining the rate of diffusion of water through the membrane are predominantly electrical; i.e., in concentrations from 0 to about M/16. For higher concentrations of the same electrolytes, where the forces determining the rate of diffusion are molecular, the osmotic behavior of the two types of membranes is essentially the same. 5. The differences in the osmotic behavior of the two types of membranes are not due to differences in the permeability of the membranes for solutes since it is shown that acids diffuse with the same rate through both kinds of membranes. 6. It is shown that the differences in the osmotic behavior of the two types of collodion membranes towards solutions of acids and of salts with trivalent cation are due to the fact that in the presence of these electrolytes water diffuses in the form of negatively charged particles through the membranes previously treated with gelatin, and in the form of positively charged particles through collodion membranes not treated with gelatin. 7. A treatment of the collodion membranes with casein, egg albumin, blood albumin, or edestin affects the behavior of the membrane towards salts with trivalent or tetravalent cations and towards acids in the same way as does a treatment with gelatin; while a treatment of the membranes with peptone prepared from egg albumin, with alanine, or with starch has no such effect.  相似文献   

3.
The jelly surrounding the eggs of the starfish, Asterias forbesi, is insoluble in normal sea water, but rapidly swells and dissolves when the eggs are washed in a pure isotonic solution of NaCl. In the presence of a small proportion of CaCl2 this solvent and disintegrative action of the NaCl solution is entirely prevented, and in the mixed solution the jelly exhibits the same insolubility and other properties as in normal sea water. 2. This action of CaCl2 in preventing the dissolution of the jelly runs parallel with its action in preventing certain definite effects of the pure NaCl solution on the living egg (agglutination, cytolytic action, membrane formation, prevention of maturation). 3. The inference is that the essential factor in these and similar antagonistic and protective actions is the formation of solid water-insoluble colloidal salts (e.g., soaps and proteinates) of calcium (or other metal) with the structural colloids of the protoplasm. Apparently the presence of a certain proportion of such compounds is necessary to the structural stability of the living protoplasm, and especially to the water-insolubility and semipermeability of its external layer or plasma membrane. When the cell is immersed in the pure NaCl solution, water-soluble Na compounds are substituted for the insoluble Ca compounds which normally provide the necessary insolubility and coherence, and disintegration results.  相似文献   

4.
1. Fundulus heteroclitus was found to be a reliable experimental animal for studies on chemical stimulation in either fresh or sea water. 2. The response of Fundulus to hydrochloric, acetic, propionic, butyric, valeric, and caproic acids was determined in fresh water, while the same acids plus sulfuric and nitric, as well as the sodium salts of the mineral acids, were tested in sea water. 3. Stimulation of Fundulus by hydrochloric acid in fresh water is correlated with the effective hydrogen ion concentration. Stimulation by the n-aliphatic acids in the same environment is correlated with two factors, the effective hydrogen ion concentration and the potential of the non-polar group in the molecule. However, as the number of CH2 groups increases the stimulating effect increases by smaller and smaller amounts, approaching a maximum value. 4. Stimulation of Fundulus by hydrochloric, sulfuric, and nitric acids in sea water is correlated with the forces of primary valence which in turn are correlated with the change in hydrogen ion concentration of the sea water. The n-aliphatic acids increase in stimulating efficiency in sea water as the length of the carbon chain increases, but a limiting value is not reached as soon as in fresh water. 5. Only a slight difference in stimulation by hydrochloric acid is found in sea water and in fresh water. However, there is a significant difference in stimulation by the fatty acids in fresh and in sea water, which is partly explained by the different buffering capacities of the two media. It is to be noted that in the same environment two different fish, Fundulus and Eupomotis, give different results, while the same fish (Fundulus) in two different environments responds similarly to mineral acids but differently to fatty acids. These results illustrate that stimulation is a function of the interaction between environment and receptors, and that each is important in determining the response. 6. Stimulation by sodium chloride, nitrate, and sulfate is correlated with equivalent concentrations of the salts added to sea water, or with the forces of primary valence. Although the threshold for stimulation by the salts is considerably higher than for the acids, the efficiency of stimulation by the salts is greater.  相似文献   

5.
Endotoxin removal by charge-modified filters.   总被引:1,自引:1,他引:0       下载免费PDF全文
C P Gerba  K Hou 《Applied microbiology》1985,50(6):1375-1377
The effects of positively charged nylon and depth (cellulose-diatomaceous earth) filters on endotoxin removal from various solutions were evaluated. The charged filter media removed significant amounts of Escherichia coli and natural endotoxin from tap water, distilled water, sugars, and NaCl solutions; no significant removal of endotoxin was observed with negatively charged filter media. The extent of removal was influenced by pH, the presence of salts, and organic matter. Such media may be useful for the control of endotoxins in raw-product water or solutions used to prepare parenteral drug products or in other fluids where endotoxin control is desired.  相似文献   

6.
1. The equations which serve to predict the injury of tissue in 0.52 M NaCl and in 0.278 M CaCl2 and its subsequent recovery (when it is replaced in sea water) also enable us to predict the behavior of tissue in mixtures of these solutions, as well as its recovery in sea water after exposure to mixtures. 2. The reactions which are assumed in order to account for the behavior of the tissue proceed as if they were inhibited by a salt compound formed by the union of NaCl and CaCl2 with some constituent of the protoplasm (certain of these reactions are accelerated by CaCl2). 3. In this and preceding papers a quantitative theory is developed in order to explain: (a) the toxicity of NaCl and CaCl2; (b) the antagonism between these substances; (c) the fact that recovery (in sea water) may be partial or complete, depending on the length of exposure to the toxic solution.  相似文献   

7.
It is shown that disappearance of the light of luminous bacteria may be used as a criterion of cell penetration; that luminous bacteria are cytolyzed by water, hypotonic solutions, and by freely penetrating solutions; that luminous bacteria are not injured by hydrogen or hydroxyl ions in the external solutions within the range of pH values employed with the ammonium salts and that therefore disappearance of the light in isotonic solutions of these salts must be due to penetration of the solute; and that there is a characteristic difference between the effects of strong and of weak acids and alkalies on luminous bacteria.  相似文献   

8.
1. The strain of Bacterium coli used in these experiments multiplies in distilled water at pH 6.0 and pH 8.0 and in Ringer-Locke solution at pH 6.0. Under all the other conditions studied the numbers decrease with the passage of time. 2. The electrophoretic charge of the cells is highest in distilled water at pH 6.0 and pH 8.0. Under all other conditions studied the velocity of migration is decreased, but the decrease is immediate and is not affected by more prolonged exposure. 3. A strongly acid solution (pH 2.0) causes a rapid death of the cells and a sharp decrease in electrophoretic charge, sometimes leading to complete reversal. 4. A strongly alkaline solution (pH 11.0) is almost as toxic as a strongly acid one, although in distilled water the organisms survive fairly well at this reaction. Electrophoretic charge, on the other hand, is only slightly reduced in such an alkaline medium. 5. In distilled water, reactions near the neutral point are about equally favorable to both viability and electrophoretic charge, pH 8.0 showing slightly greater multiplication and a slightly higher charge than pH 11.0. In the presence of salts, however, pH 8.0 is much less favorable to viability and somewhat more favorable to electrophoretic charge than is pH 6.0. 6. Sodium chloride solutions, in the concentrations studied, all proved somewhat toxic and all tended to depress electrophoretic charge. Very marked toxicity was, however, exhibited only in a concentration of .725 M strength or over and at pH 8.0, while electrophoretic migration velocity was only slightly decreased at a concentration of .0145 M strength. 7. Calcium chloride was more toxic than NaCl, showing very marked effects in .145 M strength at pH 8.0 and in 1.45 M strength at pH 6.0. It greatly depressed electrophoretic charge even in .0145 M concentration. 8. Ringer-Locke solution proved markedly stimulating to the growth of the bacteria at pH 6.0 while at pH 8.0 it was somewhat toxic, though less so than the solutions of pure salts. It depressed migration velocity at all pH values, being more effective than NaCl in this respect, but less effective than CaCl2. 9. It would appear from these experiments that a balanced salt solution (Ringer-Locke''s) may be distinctly favorable to bacterial viability in water at an optimum reaction while distinctly unfavorable in a slightly more alkaline solution. 10. Finally, while there is a certain parallelism between the influence of electrolytes upon viability and upon electrophoretic charge, the parallelism is not a close one and the two effects seem on the whole to follow entirely different laws.  相似文献   

9.
1. In highly hypertonic solutions of sea water the rate of respiration of Laminaria agardhii is rapidly reduced. 2. In highly hypotonic solutions the rate of respiration of Laminaria agardhii is reduced somewhat less rapidly than in the case of hypertonic solutions. 3. Hypertonic solutions of NaCl, CaCl2, and of mixtures of NaCl, and CaCl2 in the proportion of 50:1, all caused a decrease in the rate of respiration of wheat seedlings.  相似文献   

10.
Two characteristics of fertilizing sea urchin eggs are the elevation of a fertilization membrane and the excretion of a β-glucanase. Of 13 species tested, one species, Echinometra vanbrunti, lacks both characteristics. No β-glucanase exists in the eggs and cleavage stages. However, β-glucanase appears at hatching and is secreted to the sea water during and after the hatching period. The enzyme may function in the hatching process. The hypothesis is presented that the β-glucanase excreted by eggs of other sea urchin species may function in the elevation of the fertilization membrane.  相似文献   

11.
Chloroplasts may contract under natural conditions and give up water to the rest of the cell, thus indicating changes in metabolism or constitution. Such contractions may be produced experimentally. In Nitella the chloroplasts are ellipsoid bodies which, under natural conditions, may contract to spheres with a loss of volume. This may be brought about by lead acetate, ferric chloride, and digitonin: the contraction may occur while the cell is alive. The contraction in lead acetate is reversible (in lead nitrate little or no contraction occurs). In Spirogyra the chloroplast is a long, spirally coiled ribbon which may contract under natural conditions to a short nearly straight rod with a loss of volume. This can be brought about by inorganic salts and in other ways while the cell is still alive.  相似文献   

12.
Trehalose and sucrose, two sugars that are involved in the protection of living organisms under extreme conditions, and their mixtures with salts were employed to prepare supercooled or freeze-dried glassy systems. The objective of the present work was to explore the effects of different salts on water sorption, glass transition temperature (T(g)), and formation and melting of ice in aqueous sugar systems. In the sugar-salt mixtures, water adsorption was higher than expected on the basis of the water uptake by each pure component. In systems with a reduced mass fraction of water (w less-than-or-equal 0.4), salts delayed water crystallization, probably due to ion-water interactions. In systems where > 0.6, water crystallization could be explained by the known colligative properties of the solutes. The glass transition temperature of the maximally concentrated matrix (T(g)') was decreased by the presence of salts. However, the actual T(g) values of the systems were not modified. Thus, the effect of salts on sorption behavior and formation of ice may reflect dynamic water-salt-sugar interactions which take place at a molecular level and are related to the charge/mass ratio of the cation present without affecting supramolecular or macroscopic properties.  相似文献   

13.
Fertilized eggs of the mollusk Ilyanassa obsoleta (Nassarius obsoletus) form large blebs resembling polar lobes within 12 min of exposure to solutions of isotonic CaCl2, whereas control eggs in sea water remain spherical. Under identical conditions, fertilized eggs of the sea urchin, Strongylocentrotus purpuratus, an organism which normally does not form polar lobes, do not form blebs upon exposure to solutions of isotonic CaCl2. The calcium-induced blebbing in Ilyanassa still occurs if other cations such as Na+, Mg2+, or Mn2+ are present in addition to Ca2+, but not if comparable concentrations of K+ are present. Cytochalasin B prevents the calcium-induced blebbing, whereas colchicine does not. Cytokinesis in both Ilyanassa and Strongylocentrotus and normal polar lobe formation in Ilyanassa appear to require exogenous K+ but not exogenous Ca2+. Preliminary electron microscopy of Ilyanassa eggs exposed to isotonic solutions of CaCl2 has shown microfilaments in the cortical cytoplasm in the region of the bleb constriction but no microfilaments in spherical control eggs in sea water. These data suggest that high concentrations of exogenous Ca2+ trigger the polymerization and contraction of a ring of microfilaments in the cortical cytoplasm of the Ilyanassa egg which results in the formation of a lobelike bleb of cytoplasm. The observation that K+ antagonizes this Ca2+-induced blebbing has led to the formulation of a theory which postulates that the ratio of intracellular Ca2+ to intracellular K+ is critical in the control of polar lobe formation and cytokinesis.  相似文献   

14.
Respiratory adaptation to different sea temperatures on the Natal (east) and Table Bay (west) coasts of southern Africa is demonstrated in Actinia equina L. Animals are able to acclimate to lower sea temperatures but are unable to adapt to an increase of 3 °C or more above summer sea temperatures. Acclimation to elevated water temperatures may be limited by thermal sensitivity of the tissues and by lack of feeding when under thermal stress.The successful colonization of the Natal littoral zone by A. equina may be attributed partially to metabolic adaptability but also to its brooding ability, tolerance of desiccation, and capacity to retain water within the coelenteron. Slow exudation of this water enables evaporative cooling of the tissues during low tide. Other actinian species from Natal lack this range of features and are hence limited to damp habitats at lower tidal levels.  相似文献   

15.
The effects of positively charged nylon and depth (cellulose-diatomaceous earth) filters on endotoxin removal from various solutions were evaluated. The charged filter media removed significant amounts of Escherichia coli and natural endotoxin from tap water, distilled water, sugars, and NaCl solutions; no significant removal of endotoxin was observed with negatively charged filter media. The extent of removal was influenced by pH, the presence of salts, and organic matter. Such media may be useful for the control of endotoxins in raw-product water or solutions used to prepare parenteral drug products or in other fluids where endotoxin control is desired.  相似文献   

16.
A heat-stable factor has been found in starfish (Patiria miniata and Marthasterias glacialis) oocytes that activates two calmodulin-dependent enzymes: bovine brain phosphodiesterase (10-fold increase) and sea urchin egg NAD-kinase (10- to 50-fold increase). The dose-response curves for activation of these enzymes were found to be parallel for the starfish egg extract and pure mammalian brain calmodulin. The active factor was purified by chromatography on DE 52 cellulose to which it remained bound and was eluted by 0.225 M ammonium sulfate. Active fractions were pooled, dialyzed, and run on a polyacrylamide gel. The starfish active factor comigrated with pure bovine brain calmodulin. A radioimmunoassay was performed on the purified factor; it cross-reacted with antibodies against pure calmodulin. That calmodulin may play a role in hormonally induced maturation of starfish oocytes is suggested by the fact that two calmodulin antagonists (trifluoperazine and vinblastine), which are also inhibitors of NAD-kinase, were found to block 1-methyladenine-induced oocyte maturation. The inhibition could be reversed by increasing the hormone concentration. Oocytes were sensitive to trifluoperazine only during the hormone-dependent period.  相似文献   

17.
Dilution of sea water with isotonic sugar solution leaves the rate of cleavage of Arbacia eggs almost unchanged until the proportion of sea water is decreased to 20 or 25 volumes per cent. From this point cleavage becomes progressively slower with further dilution. Many eggs fail to cleave at dilutions of 5 to 6 volumes per cent. No cleavage occurs in 2 volumes per cent sea water or in pure sugar solution. Eggs returned from these media to sea water resume cleavage and development. There is thus no relation between the rate of cleavage and the electrical conductivity of the medium, except possibly within the range of dilutions from 20 to 5 volumes per cent sea water. In this range cleavage rate decreases as conductivity decreases, but the relation is not a linear one.  相似文献   

18.
Over a wide range of water contents, aqueous lecithin-water mixtures are mesophases in which lecithin bilayers alternate with water layers. This paper reports on low-angle X-ray diffraction measurements of the effects of electrolytes, at 1.0 N concentration, on the thicknesses of the bilayers in mesophases formed by the synthetic lecithin: 1-octadec-9-enyl-2-hexadecylglycerophosphocholine. With solutions of LiCl, NaCl, Na2SO4, KCl, and CsCl, the bilayer thicknesses are less than with pure water. The maximum reduction in bilayer thickness with these electrolytes is about 10% and occurs with mesophases of high content of KCl and CsCl solutions. With HCl solutions the bilayer thicknesses are about 5% greater than with pure water, and with CaCl2 solutions the bilayer thicknesses are about the same as with pure water. The maximum amount of solution which can be mixed with lecithin before a second, purely aqueous phase is formed is also affected by electrolytes, the order for the various 1.0 N solutions being CsCl = KCl > NaCl > Na2SO4 > (pure water) = LiCl > CaCl2.  相似文献   

19.
1. The eggs of Fucus furcatus develop perfectly in sea water acidified to pH 6.0. They are retarded at pH 5.5. At pH 5.0 they do not develop, nor do they cytolize. 2. In normal sea water in the dark at 15°C., eggs develop rhizoids on the sides in the resultant direction of a mass of neighboring eggs. The polarity and the whole developmental pattern of the embryo is thereby induced. This inductive effect does not operate, however, unless the directing mass is an appreciable aggregation of cells (10 or more), or unless there are numerous other eggs in the dish. A group of five eggs alone in a dish do not carry out mutual inductions. Two eggs alone in a dish do not develop rhizoids toward each other. 3. When the sea water is acidified to pH 6.0 all sizes of aggregations carry out mutual inductions. Two eggs alone in a dish now develop rhizoids on the sides toward each other, provided they are not more than about 4 egg diameters apart. 4. Increased hydrogen ion concentration thus augments or intensifies the mutual inductive effect. 5. This may explain why only larger masses of eggs show inductions in normal sea water, since presumably the larger masses considerably increase the hydrogen ion concentration locally. 6. The nature of the inductive action is discussed. 7. In acidified sea water at pH 6.0, compared with normal sea water at pH 7.8–8.0, the rhizoids originate and extend with a strongly increased downward component. The substrate then forces further extension or growth of the rhizoid to be in the plane of the substrate.  相似文献   

20.
Insufficient cryoprotectant permeation is one of the major obstacles for successful fish embryo cryopreservation. The purpose of this study was to test the effectiveness of osmotic and chemical treatments to enhance cryoprotectant uptake by fish embryos. Japanese whiting Sillago japonica embryos at the somites and tail elongation stages were treated with hyperosmotic sugar solutions (1 M trehalose and sucrose) for 2-6 min, or a permeating agent (2-6 mg/mL pronase) for 30-120 min, and then impregnated with 10-15% DMSO in artificial sea water or aqueous solutions containing inorganic salts (0.125-0.25 M MgCl2 and CaCl2). The viability of the embryos after the treatments was estimated from hatching rates and the internal DMSO concentration was measured by HPLC. Treatment with trehalose for 3 min prior to impregnation with DMSO enhanced the uptake of the cryoprotectant by 45% without significantly affecting embryo viability, whereas pronase had no noticeable effect on cryoprotectant permeation. Incorporation of DMSO into the embryos was enhanced by 143-170% in the presence of 0.25 M MgCl2 and 0.125 M CaCl2 compared to sea water. A combination of treatments with trehalose and MgCl2 was even more effective in promoting DMSO permeation (191% compared to untreated embryos). Tail elongation embryos were less tolerant of the treatments, but had higher DMSO impregnation. In conclusion, the use of trehalose (as dehydrating agent) and MgCl2/CaCl2 (as a vehicle during impregnation) greatly promoted cryoprotectant uptake and may be a promising aid for the successful cryopreservation of fish embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号