首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is shown by the older experiments by Loeb and by the experiments reported in this paper that the effect of salts on the membrane potentials, osmotic pressure, swelling of gelatin chloride, and that type of viscosity which is due to the swelling of protein particles, depends only on the valency but not on the chemical nature of the anion of the salt, and that the cation of the salt has no effect on these properties, if the pH of the protein solution or protein gel is not altered by the salt. The so called Hofmeister series of salt effects on these four properties are purely fictitious and due to the failure of the former authors to measure the hydrogen ion concentration of their protein solutions or gels and to compare the effects of salts at the same pH of the protein solution or the protein gel. These results confirm the older experiments of Loeb and together they furnish a further proof for the correctness of the idea that the influence of electrolytes on the four properties of proteins is determined by membrane equilibria. Such properties of proteins which do not depend on membrane equilibria, such as solubility or cohesion, may be affected not only by the valency but also by the chemical nature of the ions of a salt.  相似文献   

2.
A detailed study was made on the influence of salts on those physicochemical properties of sodium gelatinate which are regulated by Donnan''s law of membrane equilibria; namely, osmotic pressure, membrane potentials, and swelling. It was found that the influence of salts on these properties in the case of sodium gelatinate obeys the same rules of valency as in the case of the influence of salts on gelatin chloride as discussed in a previous publication. The rules state that when a salt is added to an ionized protein, without causing a change in the hydrogen ion concentration of the protein, the general effect is a depression of the mentioned properties. The degree of depression depends not only on the concentration of the salt but on the electrical properties of the ions constituting the salt. Of the two or more oppositely charged ions of which a salt consists, only the valency of those ions which carry charges opposite to those carried by the protein ions affects the degree of depression which increases with the valency of the ions. It was also found that the phenomenon of swelling of gelatin becomes modified by solubility of the gelatin when salts are added in concentrations higher than N/4. Emphasis is laid on the point that the valency rule holds perfectly also in relation to swelling as long as the phenomenon is pure swelling which is the case when salt solutions of concentrations lower than N/4 are added to gelatin.  相似文献   

3.
1. It is shown that a neutral salt depresses the potential difference which exists at the point of equilibrium between a gelatin chloride solution contained in a collodion bag and an outside aqueous solution (without gelatin). The depressing effect of a neutral salt on the P.D. is similar to the depression of the osmotic pressure of the gelatin chloride solution by the same salt. 2. It is shown that this depression of the P.D. by the salt can be calculated with a fair degree of accuracy on the basis of Nernst''s logarithmic formula on the assumption that the P.D. which exists at the point of equilibrium is due to the difference of the hydrogen ion concentration on the opposite sides of the membrane. 3. Since this difference of hydrogen ion concentration on both sides of the membrane is due to Donnan''s membrane equilibrium this latter equilibrium must be the cause of the P.D. 4. A definite P.D. exists also between a solid block of gelatin chloride and the surrounding aqueous solution at the point of equilibrium and this P.D. is depressed in a similar way as the swelling of the gelatin chloride by the addition of neutral salts. It is shown that the P.D. can be calculated from the difference in the hydrogen ion concentration inside and outside the block of gelatin at equilibrium. 5. The influence of the hydrogen ion concentration on the P.D. of a gelatin chloride solution is similar to that of the hydrogen ion concentration on the osmotic pressure, swelling, and viscosity of gelatin solutions, and the same is true for the influence of the valency of the anion with which the gelatin is in combination. It is shown that in all these cases the P.D. which exists at equilibrium can be calculated with a fair degree of accuracy from the difference of the pH inside and outside the gelatin solution on the basis of Nernst''s logarithmic formula by assuming that the difference in the concentration of hydrogen ions on both sides of the membrane determines the P.D. 6. The P.D. which exists at the boundary of a gelatin chloride solution and water at the point of equilibrium can also be calculated with a fair degree of accuracy by Nernst''s logarithmic formula from the value pCl outside minus pCl inside. This proves that the equation x2 = y ( y + z) is the correct expression for the Donnan membrane equilibrium when solutions of protein-acid salts with monovalent anion are separated by a collodion membrane from water. In this equation x is the concentration of the H ion (and the monovalent anion) in the water, y the concentration of the H ion and the monovalent anion of the free acid in the gelatin solution, and z the concentration of the anion in combination with the protein. 7. The similarity between the variation of P.D. and the variation of the osmotic pressure, swelling, and viscosity of gelatin, and the fact that the Donnan equilibrium determines the variation in P.D. raise the question whether or not the variations of the osmotic pressure, swelling, and viscosity are also determined by the Donnan equilibrium.  相似文献   

4.
1. Our results show clearly that the Hofmeister series is not the correct expression of the relative effect of ions on the swelling of gelatin, and that it is not true that chlorides, bromides, and nitrates have "hydrating," and acetates, tartrates, citrates, and phosphates "dehydrating," effects. If the pH of the gelatin is taken into considertion, it is found that for the same pH the effect on swelling is the same for gelatin chloride, nitrate, trichloracetate, tartrate, succinate, oxalate, citrate, and phosphate, while the swelling is considerably less for gelatin sulfate. This is exactly what we should expect on the basis of the combining ratios of the corresponding acids with gelatin since the weak dibasic and tribasic acids combine with gelatin in molecular proportions while the strong dibasic acid H2SO4 combines with gelatin in equivalent proportions. In the case of the weak dibasic acids he anion in combination with gelatin is therefore monovalent and in the case of the strong H2SO4 it is bivalent. Hence it is only the valency and not the nature of the ion in combination with gelatin which affects the degree of swelling. 2. This is corroborated in the experiments with alkalies which show that LiOH, NaOH, KOH, and NH4OH cause the same degree of swelling at the same pH of the gelatin solution and that this swelling is considerably higher than that caused by Ca(OH)2 and Ba(OH)2 for the same pH. This agrees with the results of the titration experiments which prove that Ca(OH)2 and Ba(OH)2 combine with gelatin in equivalent proportions and that hence the cation in combination with the gelatin salt with these two latter bases is bivalent. 3. The fact that proteins combine with acids and alkalies on the basis of the forces of primary valency is therefore not only in full agreement with the influence of ions on the physical properties of proteins but allows us to predict this influence qualitatively and quantitatively. 4. What has been stated in regard to the influence of ions on the swelling of the different gelatin salts is also true in regard to the influence of ions on the relative solubility of gelatin in alcohol-water mixtures. 5. Conductivity measurements of solutions of gelatin salts do not support the theory that the drop in the curves for swelling, osmotic pressure, or viscosity, which occurs at a pH 3.3 or a little less, is due to a drop in the concentration of ionized protein in the solution; nor do they suggest that the difference between the physical properties of gelatin sulfate and gelatin chloride is due to differences in the degree of ionization of these two salts.  相似文献   

5.
1. Colloids have been divided into two groups according to the ease with which their solutions or suspensions are precipitated by electrolytes. One group (hydrophilic colloids), e.g., solutions of gelatin or crystalline egg albumin in water, requires high concentrations of electrolytes for this purpose, while the other group (hydrophobic colloids) requires low concentrations. In the latter group the precipitating ion of the salt has the opposite sign of charge as the colloidal particle (Hardy''s rule), while no such relation exists in the precipitation of colloids of the first group. 2. The influence of electrolytes on the solubility of solid Na caseinate, which belongs to the first group (hydrophilic colloids), and of solid casein chloride which belongs to the second group (hydrophobic colloids), was investigated and it was found that the forces determining the solution are entirely different in the two cases. The forces which cause the hydrophobic casein chloride to go into solution are forces regulated by the Donnan equilibrium; namely, the swelling of particles. As soon as the swelling of a solid particle of casein chloride exceeds a certain limit it is dissolved. The forces which cause the hydrophilic Na caseinate to go into solution are of a different character and may be those of residual valency. Swelling plays no rôle in this case, and the solubility of Na caseinate is not regulated by the Donnan equilibrium. 3. The stability of solutions of casein chloride (requiring low concentrations of electrolytes for precipitation) is due, first, to the osmotic pressure generated through the Donnan equilibrium between the casein ions tending to form an aggregate, whereby the protein ions of the nascent micellum are forced apart again; and second, to the potential difference between the surface of a micellum and the surrounding solution (also regulated by the Donnan equilibrium) which prevents the further coalescence of micella already formed. This latter consequence of the Donnan effect had already been suggested by J. A. Wilson. 4. The precipitation of this group of hydrophobic colloids by salts is due to the diminution or annihilation of the osmotic pressure and the P.D. just discussed. Since low concentrations of electrolytes suffice for the depression of the swelling and P.D. of the micella, it is clear why low concentrations of electrolytes suffice for the precipitation of hydrophobic colloids, such as casein chloride. 5. This also explains why only that ion of the precipitating salt is active in the precipitation of hydrophobic colloids which has the opposite sign of charge as the colloidal ion, since this is always the case in the Donnan effect. Hardy''s rule is, therefore, at least in the precipitation of casein chloride, only a consequence of the Donnan effect. 6. For the salting out of hydrophilic colloids, like gelatin, from watery solution, sulfates are more efficient than chlorides regardless of the pH of the gelatin solution. Solution experiments lead to the result that while CaCl2 or NaCl increase the solubility of isoelectric gelatin in water, and the more, the higher the concentration of the salt, Na2SO4 increases the solubility of isoelectric gelatin in low concentrations, but when the concentration of Na2SO4 exceeds M/32 it diminishes the solubility of isoelectric gelatin the more, the higher the concentration. The reason for this difference in the action of the two salts is not yet clear. 7. There is neither any necessity nor any room for the assumption that the precipitation of proteins is due to the adsorption of the ions of the precipitating salt by the colloid.  相似文献   

6.
1. In three previous publications it had been shown that electrolytes influence the rate of diffusion of pure water through a collodion membrane into a solution in three different ways, which can be understood on the assumption of an electrification of the water or the watery phase at the boundary of the membrane; namely, (a) While the watery phase in contact with collodion is generally positively electrified, it happens that, when the membrane has received a treatment with a protein, the presence of hydrogen ions and of simple cations with a valency of three or above (beyond a certain concentration) causes the watery phase of the double layer at the boundary of membrane and solution to be negatively charged. (b) When pure water is separated from a solution by a collodion membrane, the initial rate of diffusion of water into a solution is accelerated by the ion with the opposite sign of charge and retarded by the ion with the same sign of charge as that of the water, both effects increasing with the valency of the ion and a second constitutional quantity of the ion which is still to be defined. (c) The relative influence of the oppositely charged ions, mentioned in (b), is not the same for all concentrations of electrolytes. For lower concentrations the influence of that ion usually prevails which has the opposite sign of charge from that of the watery phase of the double layer; while in higher concentrations the influence of that ion begins to prevail which has the same sign of charge as that of the watery phase of the double layer. For a number of solutions the turning point lies at a molecular concentration of about M/256 or M/512. In concentrations of M/8 or above the influence of the electrical charges of ions mentioned in (b) or (c) seems to become less noticeable or to disappear entirely. 2. It is shown in this paper that in electrical endosmose through a collodion membrane the influence of electrolytes on the rate of transport of liquids is the same as in free osmosis. Since the influence of electrolytes on the rate of transport in electrical endosmose must be ascribed to their influence on the quantity of electrical charge on the unit area of the membrane, we must conclude that the same explanation holds for the influence of electrolytes on the rate of transport of water into a solution through a collodion membrane in the case of free osmosis. 3. We may, therefore, conclude, that when pure water is separated from a solution of an electrolyte by a collodion membrane, the rate of diffusion of water into the solution by free osmosis is accelerated by the ion with the opposite sign of charge as that of the watery phase of the double layer, because this ion increases the quantity of charge on the unit area on the solution side of the membrane; and that the rate of diffusion of water is retarded by the ion with the same sign of charge as that of the watery phase for the reason that this ion diminishes the charge on the solution side of the membrane. When, therefore, the ions of an electrolyte raise the charge on the unit area of the membrane on the solution side above that on the side of pure water, a flow of the oppositely charged liquid must occur through the interstices of the membrane from the side of the water to the side of the solution (positive osmosis). When, however, the ions of an electrolyte lower the charge on the unit area of the solution side of the membrane below that on the pure water side of the membrane, liquid will diffuse from the solution into the pure water (negative osmosis). 4. We must, furthermore, conclude that in lower concentrations of many electrolytes the density of electrification of the double layer increases with an increase in concentration, while in higher concentrations of the same electrolytes it decreases with an increase in concentration. The turning point lies for a number of electrolytes at a molecular concentration of about M/512 or M/256. This explains why in lower concentrations of electrolytes the rate of diffusion of water through a collodion membrane from pure water into solution rises at first rapidly with an increase in concentration while beyond a certain concentration (which in a number of electrolytes is M/512 or M/256) the rate of diffusion of water diminishes with a further increase in concentration.  相似文献   

7.
1. The action of a number of acids on four properties of gelatin (membrane potentials, osmotic pressure, swelling, and viscosity) was studied. The acids used can be divided into three groups; first, monobasic acids (HCl, HBr, HI, HNO3, acetic, propionic, and lactic acids); second, strong dibasic acids (H2SO4 and sulfosalicylic acid) which dissociate as dibasic acids in the range of pH between 4.7 and 2.5; and third, weak dibasic and tribasic acids (succinic, tartaric, citric) which dissociate as monobasic acids at pH 3.0 or below and dissociate increasingly as dibasic acids, according to their strength, with pH increasing above 3.0. 2. If the influence of these acids on the four above mentioned properties of gelatin is plotted as ordinates over the pH of the gelatin solution or gelatin gel as abscissæ, it is found that all the acids have the same effect where the anion is monovalent; this is true for the seven monobasic acids at all pH and for the weak dibasic and tribasic acids at pH below 3.0. The two strong dibasic acids (the anion of which is divalent in the whole range of pH of these experiments) have a much smaller effect than the acids with monovalent anion. The weak dibasic and tribasic acids act, at pH above 3.0, like acids the anion of which is chiefly monovalent but which contain also divalent anions increasing with pH and with the strength of the acid. 3. These experiments prove that only the valency but not the other properties of the anion of an acid influences the four properties of gelatin mentioned, thus absolutely contradicting the Hofmeister anion series in this case which were due to the failure of the earlier experimenters to measure properly the pH of their protein solutions or gels and to compare the effects of acids at the same pH of the protein solution or protein gel after equilibrium was established. 4. It is shown that the validity of the valency rule and the non-validity of the Hofmeister anion series for the four properties of proteins mentioned are consequences of the fact that the influence of acids on the membrane potentials, osmotic pressure, swelling, and viscosity of gelatin is due to the Donnan equilibrium between protein solutions or gels and the surrounding aqueous solution. This equilibrium depends only on the valency but not on any other property of the anion of an acid. 5. That the valency rule is determined by the Donnan equilibrium is strikingly illustrated by the ratio of the membrane potentials for divalent and monovalent anions of acids. Loeb has shown that the Donnan equilibrium demands that this ratio should be 0.66 and the actual measurements agree with this postulate of the theory within the limits of accuracy of the measurements. 6. The valency rule can be expected to hold for only such properties of proteins as depend upon the Donnan equilibrium. Properties of proteins not depending on the Donnan equilibrium may be affected not only by the valency but also by the chemical nature of the anion of an acid.  相似文献   

8.
1. It had been shown in previous publications that the osmotic pressure of a 1 per cent solution of a protein-acid salt varies in a characteristic way with the hydrogen ion concentration of the solution, the osmotic pressure having a minimum at the isoelectric point, rising steeply with a decrease in pH until a maximum is reached at pH of 3.4 or 3.5 (in the case of gelatin and crystalline egg albumin), this maximum being followed by a steep drop in the osmotic pressure with a further decrease in the pH of the gelatin or albumin solution. In this paper it is shown that (aside from two minor discrepancies) we can calculate this effect of the pH on the osmotic pressure of a protein-acid salt by assuming that the pH effect is due to that unequal distribution of crystalloidal ions (in particular free acid) on both sides of the membrane which Donnan''s theory of membrane equilibrium demands. 2. It had been shown in preceding papers that only the valency but not the nature of the ion (aside from its valency) with which a protein is in combination has any effect upon the osmotic pressure of the solution of the protein; and that the osmotic pressure of a gelatin-acid salt with a monovalent anion (e.g. Cl, NO3, acetate, H2PO4, HC2O4, etc.) is about twice or perhaps a trifle more than twice as high as the osmotic pressure of gelatin sulfate where the anion is bivalent; assuming that the pH and gelatin concentrations of all the solutions are the same. It is shown in this paper that we can calculate with a fair degree of accuracy this valency effect on the assumption that it is due to the influence of the valency of the anion of a gelatin-acid salt on that relative distribution of the free acid on both sides of the membrane which Donnan''s theory of membrane equilibrium demands. 3. The curves of the observed values of the osmotic pressure show two constant minor deviations from the curves of the calculated osmotic pressure. One of these deviations consists in the fact that the values of the ascending branch of the calculated curves are lower than the corresponding values in the curves for the observed osmotic pressure, and the other deviation consists in the fact that the drop in the curves of calculated values occurs at a lower pH than the drop in the curves of the observed values.  相似文献   

9.
1. It is well known that neutral salts depress the osmotic pressure, swelling, and viscosity of protein-acid salts. Measurements of the P.D. between gelatin chloride solutions contained in a collodion bag and an outside aqueous solution show that the salt depresses the P.D. in the same proportion as it depresses the osmotic pressure of the gelatin chloride solution. 2. Measurements of the hydrogen ion concentration inside the gelatin chloride solution and in the outside aqueous solution show that the difference in pH of the two solutions allows us to calculate the P.D. quantitatively on the basis of the Nernst formula See PDF for Equation if we assume that the P.D. is due to a difference in the hydrogen ion concentration on the two sides of the membrane. 3. This difference in pH inside minus pH outside solution seems to be the consequence of the Donnan membrane equilibrium, which only supposes that one of the ions in solution cannot diffuse through the membrane. It is immaterial for this equilibrium whether the non-diffusible ion is a crystalloid or a colloid. 4. When acid is added to isoelectric gelatin the osmotic pressure rises at first with increasing hydrogen ion concentration, reaches a maximum at pH 3.5, and then falls again with further fall of the pH. It is shown that the P.D. of the gelatin chloride solution shows the same variation with the pH (except that it reaches its maximum at pH of about 3.9) and that the P.D. can be calculated from the difference of pH inside minus pH outside on the basis of Nernst''s formula. 5. It was found in preceding papers that the osmotic pressure of gelatin sulfate solutions is only about one-half of that of gelatin chloride or gelatin phosphate solutions of the same pH and the same concentration of originally isoelectric gelatin; and that the osmotic pressure of gelatin oxalate solutions is almost but not quite the same as that of the gelatin chloride solutions of the same pH and concentration of originally isoelectric gelatin. It was found that the curves for the values for P.D. of these four gelatin salts are parallel to the curves of their osmotic pressure and that the values for pH inside minus pH outside multiplied by 58 give approximately the millivolts of these P.D. In this preliminary note only the influence of the concentration of the hydrogen ions on the P.D. has been taken into consideration. In the fuller paper, which is to follow, the possible influence of the concentration of the anions on this quantity will have to be discussed.  相似文献   

10.
1. It has been shown in previous publications that when solutions of different concentrations of salts are separated by collodion-gelatin membranes from water, electrical forces participate in addition to osmotic forces in the transport of water from the side of the water to that of the solution. When the hydrogen ion concentration of the salt solution and of the water on the other side of the membrane is the same and if both are on the acid side of the isoelectric point of gelatin (e.g. pH 3.0), the electrical transport of water increases with the valency of the cation and inversely with the valency of the anion of the salt in solution. Moreover, the electrical transport of water increases at first with increasing concentration of the solution until a maximum is reached at a concentration of about M/32, when upon further increase of the concentration of the salt solution the transport diminishes until a concentration of about M/4 is reached, when a second rise begins, which is exclusively or preeminently the expression of osmotic forces and therefore needs no further discussion. 2. It is shown that the increase in the height of the transport curves with increase in the valency of the cation and inversely with the increase in the valency of the anion is due to the influence of the salt on the P.D. (E) across the membrane, the positive charge of the solution increasing in the same way with the valency of the ions mentioned. This effect on the P.D. increases with increasing concentration of the solution and is partly, if not essentially, the result of diffusion potentials. 3. The drop in the transport curves is, however, due to the influence of the salts on the P.D. (ε) between the liquid inside the pores of the gelatin membrane and the gelatin walls of the pores. According to the Donnan equilibrium the liquid inside the pores must be negatively charged at pH 3.0 and this charge is diminished the higher the concentration of the salt. Since the electrical transport is in proportion to the product of E x ε and since the augmenting action of the salt on E begins at lower concentrations than the depressing action on ε, it follows that the electrical transport of water must at first rise with increasing concentration of the salt and then drop. 4. If the Donnan equilibrium is the sole cause for the P.D. (ε) between solid gelatin and watery solution the transport of water through collodion-gelatin membranes from water to salt solution should be determined purely by osmotic forces when water, gelatin, and salt solution have the hydrogen ion concentration of the isoelectric point of gelatin (pH = 4.7). It is shown that this is practically the case when solutions of LiCl, NaCl, KCl, MgCl2, CaCl2, BaCl2, Na2SO4, MgSO4 are separated by collodion-gelatin membranes from water; that, however, when the salt has a trivalent (or tetravalent?) cation or a tetravalent anion a P.D. between solid isoelectric gelatin and water is produced in which the wall assumes the sign of charge of the polyvalent ion. 5. It is suggested that the salts with trivalent cation, e.g. Ce(NO3)3, form loose compounds with isoelectric gelatin which dissociate electrolytically into positively charged complex gelatin-Ce ions and negatively charged NO3 ions, and that the salts of Na4Fe(CN)6 form loose compounds with isoelectric gelatin which dissociate electrolytically into negatively charged complex gelatin-Fe(CN)6 ions and positively charged Na ions. The Donnan equilibrium resulting from this ionization would in that case be the cause of the charge of the membrane.  相似文献   

11.
1. Gelatin solutions have a high viscosity which in the case of freshly prepared solutions varies under the influence of the hydrogen ion concentration in a similar way as the swelling, the osmotic pressure, and the electromotive forces. Solutions of crystalline egg albumin have under the same conditions a comparatively low viscosity which is practically independent of the pH (above 1.0). This difference in the viscosities of solutions of the two proteins seems to be connected with the fact that solutions of gelatin have a tendency to set to a Jelly while solutions of crystalline egg albumin show no such tendency at low temperature and pH above 1.0. 2. The formulæ for viscosity demand that the difference in the order of magnitude of the viscosity of the two proteins should correspond to a difference in the relative volume occupied by equal masses of the two proteins in the same volume of solution. It is generally assumed that these variations of volume of dissolved proteins are due to the hydration of the isolated protein ions, but if this view were correct the influence of pH on viscosity should be the same in the case of solutions of gelatin, of amino-acids, and of crystalline egg albumin, which, however, is not true. 3. Suspensions of powdered gelatin in water were prepared and it was found, first, that the viscosity of these suspensions is a little higher than that of gelatin solutions of the same concentration, second, that the pH influences the viscosity of these suspensions similarly as the viscosity of freshly prepared gelatin solutions, and third, that the volume occupied by the gelatin in the suspension varies similarly as the viscosity which agrees with the theories of viscosity. It is shown that this influence of the pH on the volume occupied by the gelatin granules in suspension is due to the existence of a Donnan equilibrium between the granules and the surrounding solution.  相似文献   

12.
1. It had been shown in previous publications that when pure water is separated from a solution of an electrolyte by a collodion membrane the ion with the same sign of charge as the membrane increases and the ion with the opposite sign of charge as the membrane diminishes the rate of diffusion of water into the solution; but that the relative influence of the oppositely charged ions upon the rate of diffusion of water through the membrane is not the same for different concentrations. Beginning with the lowest concentrations of electrolytes the attractive influence of that ion which has the same sign of charge as the collodion membrane upon the oppositely charged water increases more rapidly with increasing concentration of the electrolyte than the repelling effect of the ion possessing the opposite sign of charge as the membrane. When the concentration exceeds a certain critical value the repelling influence of the latter ion upon the water increases more rapidly with a further increase in the concentration of the electrolyte than the attractive influence of the ion having the same sign of charge as the membrane. 2. It is shown in this paper that the influence of the concentration of electrolytes on the rate of transport of water through collodion membranes in electrical endosmose is similar to that in the case of free osmosis. 3. On the basis of the Helmholtz theory of electrical double layers this seems to indicate that the influence of an electrolyte on the rate of diffusion of water through a collodion membrane in the case of free osmosis is due to the fact that the ion possessing the same sign of charge as the membrane increases the density of charge of the latter while the ion with the opposite sign diminishes the density of charge of the membrane. The relative influence of the oppositely charged ions on the density of charge of the membrane is not the same in all concentrations. The influence of the ion with the same sign of charge increases in the lowest concentrations more rapidly with increasing concentration than the influence of the ion with the opposite sign of charge, while for somewhat higher concentrations the reverse is true.  相似文献   

13.
1. These experiments confirm the conclusion that protein solutions are true solutions consisting of isolated ions and molecules, and that these solutions may or may not contain in addition solid submicroscopic particles capable of occluding water. 2. The typical influence of electrolytes on the osmotic pressure of protein solutions is due to the isolated protein ions since these alone are capable of causing a Donnan equilibrium across a membrane impermeable to the protein ions but permeable to most crystalloidal ions. 3. The similar influence of electrolytes on the viscosity of protein solutions is due to the submicroscopic solid protein particles capable of occluding water since the amount of water occluded by (or the amount of swelling of) these particles is regulated by the Donnan equilibrium. 4. These ideas are supported by the fact that the more the submicroscopic solid particles contained in a protein solution or suspension are transformed into isolated ions (e.g., by keeping gelatin solution for 1 hour or more at 45°C.) the more the viscosity of the solution is diminished while the osmotic pressure is increased, and vice versa.  相似文献   

14.
1. By the use of the silver-silver chloride electrode, measurements have been made of the chloride ion concentrations of 1 per cent solutions of five proteins, containing from 0.001 N to 0.1 N hydrochloric acid. The hydrogen ion concentrations of the same solutions have been measured by the use of the hydrogen electrode. 2. The measurements indicate that the chlorides of gelatin, egg albumin, casein, edestin, and serum globulin are highly ionized electrolytes, ionizing to yield chloride ion and a positive protein-hydrogen ion. Their ionization is therefore similar to that of ammonium chloride. 3. The results do not support the idea that a protein chloride does not yield chloride ion on dissociation. They are not in agreement with the idea that the depressing effect of an excess of HCl on the viscosity and other colloidal properties of a protein chloride solution is due to a repression of the ionization of the protein chloride. The results are, however, in complete accord with the theory of colloidal behavior advocated by Loeb.  相似文献   

15.
1. It is shown that when part of the gelatin in a solution of gelatin chloride is replaced by particles of powdered gelatin (without change of pH) the membrane potential of the solution is influenced comparatively little. 2. A measurement of the hydrogen ion concentration of the gelatin chloride solution and the outside aqueous solution with which the gelatin solution is in osmotic equilibrium, shows that the membrane potential can be calculated from this difference of hydrogen ion concentration with an accuracy of half a millivolt. This proves that the membrane potential is due to the establishment of a membrane equilibrium and that the powdered particles participate in this membrane equilibrium. 3. It is shown that a Donnan equilibrium is established between powdered particles of gelatin chloride and not too strong a solution of gelatin chloride. This is due to the fact that the powdered gelatin particles may be considered as a solid solution of gelatin with a higher concentration than that of the weak gelatin solution in which they are suspended. It follows from the theory of membrane equilibria that this difference in concentration of protein ions must give rise to potential differences between the solid particles and the weaker gelatin solution. 4. The writer had shown previously that when the gelatin in a solution of gelatin chloride is replaced by powdered gelatin (without a change in pH), the osmotic pressure of the solution is lowered the more the more dissolved gelatin is replaced by powdered gelatin. It is therefore obvious that the powdered particles of gelatin do not participate in the osmotic pressure of the solution in spite of the fact that they participate in the establishment of the Donnan equilibrium and in the membrane potentials. 5. This paradoxical phenomenon finds its explanation in the fact that as a consequence of the participation of each particle in the Donnan equilibrium, a special osmotic pressure is set up in each individual particle of powdered gelatin which leads to a swelling of that particle, and this osmotic pressure is measured by the increase in the cohesion pressure of the powdered particles required to balance the osmotic pressure inside each particle. 6. In a mixture of protein in solution and powdered protein (or protein micellæ) we have therefore two kinds of osmotic pressure, the hydrostatic pressure of the protein which is in true solution, and the cohesion pressure of the aggregates. Since only the former is noticeable in the hydrostatic pressure which serves as a measure of the osmotic pressure of a solution, it is clear why the osmotic pressure of a protein solution must be diminished when part of the protein in true solution is replaced by aggregates.  相似文献   

16.
1. It seems first of all clear from our results that the effect of electrolytes upon electrophoretic charge is essentially the same, whether one is dealing with silica dust, bacteria, or yeast cells, although certain quantitative differences appear which will later be discussed. 2. The normal negative charge on the suspended particles appears to be slightly increased by very low concentrations of electrolytes, markedly so in the case of yeast cells. Increase in charge due to minimal concentrations of electrolytes has been recorded by Loeb (1922) for collodion particles. 3. Higher concentrations of electrolytes cause a marked and progressive decrease in negative charge, sometimes leading to an isopotential condition and sometimes to a complete reversal of charge with active migration toward the cathode. This effect is apparently due to the cation alone and increases with the valency of the cation, except that the H ion shows specially marked activity, between that of bivalent and trivalent ions. Since NaOH behaves like an ordinary univalent salt, increased alkalinity of a solution does not further depress the charge already depressed by salts; but, since the H ion is much more active than other univalent or bivalent ions, increased acidity does cause a further progressive depression of charge, even in salt solutions. Certain electrolytes appear to show individual peculiarities due to something else than their valency. Thus KCl for example is distinctly more effective than NaCl. Sodium chloride in general appears to exert less influence upon electrophoretic charge, either in low or high dilution, than do other compounds of univalent ions studied. This depressing effect of moderately high concentrations of electrolytes is much less marked with yeast cells than with Bacterium coli. Silica dust is still less affected by monovalent and bivalent ions than are the yeast cells but appears to be more affected than either yeast or Bacterium coli by AlCl3. 4. Very high concentrations of AlCl3 (above 10–2 M) show a third effect, a decrease of the positive charge produced by concentrations of moderate molar strength. This is analogous to phenomena observed for trivalent salts by Northrop and De Kruif (1921–22) and for acid by Winslow, Falk, and Caulfield (1923–24). 5. Organic substances, such as glucose, glycerol, and saponin produce no effect on electrophoretic velocity until they reach a concentration at which viscosity changes are involved. 6. The first two results observed,—(a) the increase in charge as a result of slight additions of electrolytes, and (b) the marked decrease in charge with further concentration of electrolytes, depending on the valency of the cation, so far as vegetable cells are concerned, are entirely in accord with the theory of the Donnan equilibrium as worked out by Loeb (1922). We might assume in explaining such phenomena that the plant cell contains a certain proportion of unbound protein material and that the first modicum of cation which enters the cell is bound by the protein, leading to an increase in the relative negative charge of the cell as compared with its menstruum, while subsequent increments of cation remain unbound in the cell and thus lower its charge. When we find, however, that the same phenomena are apparent with collodion particles, as shown by Loeb, and with silica dust, it seems difficult to apply such a theory, involving the conceptions of a permeable membrane and unbound organic compounds. Loeb (1923–24) suggests that the primary increase may be due to an aggregation of anions in the part of the electrical double layer adjacent to the suspended particles; but why there should be first an aggregation of anions and later (with increasing concentration) an aggregation of cations, is not easy to conceive. The third result,—the reversion to a more negative charge in the presence of a marked excess of trivalent ions,—is again difficult to explain. Loeb, in this connection, postulates the existence of complex ion-protein compounds, which can scarcely be assumed in the case of the silica particles.  相似文献   

17.
1. Amphoteric electrolytes form salts with both acids and alkalies. It is shown for two amphoteric electrolytes, Al(OH)3 and gelatin, that in the presence of an acid salt water diffuses through a collodion membrane into a solution of these substances as if its particles were negatively charged, while water diffuses into solutions of these electrolytes, when they exist as monovalent or bivalent metal salts, as if the particles of water were positively charged. The turning point for the sign of the electrification of water seems to be near or to coincide with the isoelectric point of these two ampholytes which is a hydrogen ion concentration of about 2 x 10–5 N for gelatin and about 10–7 for Al(OH)3. 2. In conformity with the rules given in a preceding paper the apparently positively charged water diffuses with less rapidity through a collodion membrane into a solution of Ca and Ba gelatinate than into a solution of Li, Na, K, or NH4 gelatinate of the same concentration of gelatin and of hydrogen ions. Apparently negatively charged water diffuses also with less rapidity through a collodion membrane into a solution of gelatin sulfate than into a solution of gelatin chloride or nitrate of the same concentration of gelatin and of hydrogen ions. 3. If we define osmotic pressure as that additional pressure upon the solution required to cause as many molecules of water to diffuse from solution to the pure water as diffuse simultaneously in the opposite direction through the membrane, it follows that the osmotic pressure cannot depend only on the concentration of the solute but must depend also on the electrostatic effects of the ions present and that the influence of ions on the osmotic pressure must be the same as that on the initial velocity of diffusion. This assumption was put to a test in experiments with gelatin salts for which a collodion membrane is strictly semipermeable and the tests confirmed the expectation.  相似文献   

18.
1. It has been shown in this paper that while non-ionized gelatin may exist in gelatin solutions on both sides of the isoelectric point (which lies for gelatin at a hydrogen ion concentration of CH = 2.10–5 or pH = 4.7), gelatin, when it ionizes, can only exist as an anion on the less acid side of its isoelectric point (pH > 4.7), as a cation only on the more acid side of its isoelectric point (pH < 4.7). At the isoelectric point gelatin can dissociate practically neither as anion nor as cation. 2. When gelatin has been transformed into sodium gelatinate by treating it for some time with M/32 NaOH, and when it is subsequently treated with HCl, the gelatin shows on the more acid side of the isoelectric point effects of the acid treatment only; while the effects of the alkali treatment disappear completely, showing that the negative gelatin ions formed by the previous treatment with alkali can no longer exist in a solution with a pH < 4.7. When gelatin is first treated with acid and afterwards with alkali on the alkaline side of the isoelectric point only the effects of the alkali treatment are noticeable. 3. On the acid side of the isoelectric point amphoteric electrolytes can only combine with the anions of neutral salts, on the less acid side of their isoelectric point only with cations; and at the isoelectric point neither with the anion nor cation of a neutral salt. This harmonizes with the statement made in the first paragraph, and the experimental results on the effect of neutral salts on gelatin published in the writer''s previous papers. 4. The reason for this influence of the hydrogen ion concentration on the stability of the two forms of ionization possible for an amphoteric electrolyte is at present unknown. We might think of the possibility of changes in the configuration or constitution of the gelatin molecule whereby ionized gelatin can exist only as an anion on the alkaline side and as a cation on the acid side of its isoelectric point. 5. The literature of colloid chemistry contains numerous statements which if true would mean that the anions of neutral salts act on gelatin on the alkaline side of the isoelectric point, e.g. the alleged effect of the Hofmeister series of anions on the swelling and osmotic pressure of common gelatin in neutral solutions, and the statement that both ions of a neutral salt influence a protein simultaneously. The writer has shown in previous publications that these statements are contrary to fact and based on erroneous methods of work. Our present paper shows that these claims of colloid chemists are also theoretically impossible. 6. In addition to other physical properties the conductivity of gelatin previously treated with acids has been investigated and plotted, and it was found that this conductivity is a minimum in the region of the isoelectric point, thus confirming the conclusion that gelatin can apparently not exist in ionized condition at that point. The conductivity rises on either side of the isoelectric point, but not symmetrically for reasons given in the paper. It is shown that the curves for osmotic pressure, viscosity, swelling, and alcohol number run parallel to the curve of the conductivity of gelatin when the gelatin has been treated with acid, supporting the view that these physical properties are in this case mainly or exclusively a function of the degree of ionization of the gelatin or gelatin salt formed. It is pointed out, however, that certain constitutional factors, e.g. the valency of the ion in combination with the gelatin, may alter the physical properties of the gelatin (osmotic pressure, etc.) without apparently altering its conductivity. This point is still under investigation and will be further discussed in a following publication. 7. It is shown that the isoelectric point of an amphoteric electrolyte is not only a point where the physical properties of an ampholyte experience a sharp drop and become a minimum, but that it is also a turning point for the mode of chemical reactions of the ampholyte. It may turn out that this chemical influence of the isoelectric point upon life phenomena overshadows its physical influence. 8. These experiments suggest that the theory of amphoteric colloids is in its general features identical with the theory of inorganic hydroxides (e.g. aluminum hydroxide), whose behavior is adequately understood on the basis of the laws of general chemistry.  相似文献   

19.
1. The proof is completed that the influence of electrolytes on the viscosity of suspensions of powdered particles of gelatin in water is similar to the influence of electrolytes on the viscosity of solutions of gelatin in water. 2. It has been suggested that the high viscosity of proteins is due to the existence of a different type of viscosity from that existing in crystalloids. It is shown that such an assumption is unnecessary and that the high viscosity of solutions of isoelectric gelatin can be accounted for quantitatively on the assumption that the relative volume of the gelatin in solution is comparatively high. 3. Since isoelectric gelatin is not ionized, the large volume cannot be due to a hydration of gelatin ions. It is suggested that this high volume of gelatin solutions is caused by the existence in the gelatin solution of submicroscopic pieces of solid gelatin occluding water, the relative quantity of which is regulated by the Donnan equilibrium. This would also explain why the influence of electrolytes on the viscosity of gelatin solutions is similar to the influence of electrolytes on the viscosity of suspensions of particles of gelatin. 4. This idea is supported by experiments on solutions and suspensions of casein chloride in which it is shown that their viscosity is chiefly due to the swelling of solid particles of casein, occluding quantities of water regulated by the Donnan equilibrium; and that the breaking up of these solid particles into smaller particles, no longer capable of swelling, diminishes the viscosity. 5. This leads to the idea that proteins form true solutions in water which in certain cases, however, contain, side by side with isolated ions and molecules, submicroscopic solid particles capable of occluding water whereby the relative volume and the viscosity of the solution is considerably increased. This accounts not only for the high order of magnitude of the viscosity of such protein solutions but also for the fact that the viscosity is influenced by electrolytes in a similar way as is the swelling of protein particles. 6. We therefore reach the conclusion that there are two sources for the viscosity of protein solutions; one due to the isolated protein ions and molecules, and the other to the submicroscopic solid particles contained in the solution. The viscosity due to the isolated molecules and ions of proteins we will call the general viscosity since it is of a similar low order of magnitude as that of crystalloids in solution; while the high viscosity due to the submicroscopic solid protein particles capable of occluding water and of swelling we will call the special viscosity of protein solutions. Under ordinary conditions of hydrogen ion concentration and temperature (and in not too high a concentration of the protein in solution) the general viscosity due to isolated ions and molecules prevails in solutions of crystalline egg albumin and in solutions of metal caseinates (where the metal is monovalent) while under the same conditions the second type of viscosity prevails in solutions of gelatin and in solutions of acid-salts of casein; and also in solutions of crystalline egg albumin at a pH below 1.0 and at higher temperatures. The special viscosity is higher in solutions of gelatin than of casein salts for the probable reason that the amount of water occluded by the submicroscopic solid gel particles in a gelatin solution is, as a rule, considerably higher than that occluded by the corresponding particles of casein.  相似文献   

20.
1. It has been found that the ratios of the total concentrations of Ca, Mg, K, Zn, inside and outside of gelatin particles do not agree with the ratios calculated according to Donnan''s theory from the hydrogen ion activity ratios. 2. E.M.F. measurements of Zn and Cl electrode potentials in such a system show, however, that the ion activity ratios are correct, so that the discrepancy must be due to a decrease in the ion concentration by the formation of complex ions with the protein. 3. This has been confirmed in the case of Zn by Zn potential measurements in ZnCl2 solutions containing gelatin. It has been found that in 10 per cent gelatin containing 0.01 M ZnCl2 about 60 per cent of the Zn++ is combined with the gelatin. 4. If the activity ratios are correctly expressed by Donnan''s equation, then the amount of any ion combined with a protein can be determined without E.M.F. measurements by determining its distribution in a proper system. If the activity ratio of the hydrogen ion and the activity of the other ion in the aqueous solution are known, then the activity and hence the concentration of the ion in the protein solution can be calculated. The difference between this and the total molar concentration of the ion in the protein represents the amount combined with the protein. 5. It has been shown that in the case of Zn the values obtained in this way agree quite closely with those determined by direct E.M.F. measurements. 6. The combination with Zn is rapidly and completely reversible and hence is probably not a surface effect. 7. Since the protein combines more with Zn than with Cl, the addition of ZnCl2 to isoelectric gelatin should give rise to an unequal ion distribution and hence to an increase in swelling, osmotic pressure, and viscosity. This has been found to be the case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号