首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. It is shown that the concentrations of different salts required to precipitate suspensions of gelatin-coated collodion particles in water are practically identical with the concentrations of the same salts required for the "salting out" of gelatin from aqueous solutions. Neither effect shows any relation to the electrical double layers surrounding the particles. 2. It is shown that at the isoelectric point of gelatin, suspensions of gelatin-coated collodion particles are not stable and it had been shown previously that gelatin is least soluble at the isoelectric point. The addition of salt increases both the solubility of gelatin in water as well as the stability of suspensions of gelatin-coated collodion particles in water, and both effects increase with the valency of one of the ions of the salt. 3. This latter effect is not due to any charges conferred on the gelatin particles by the salts, since the cataphoretic experiments show that salts like NaCl, Na2SO4, or CaCl2, which at the isoelectric point of gelatin increase the solubility of gelatin as well as the stability of suspensions of gelatin-coated collodion particles, leave the particles practically uncharged in the concentrations in which the salts are efficient. 4. It follows from all these facts that the stability of suspensions of gelatin-coated particles in water depends on the solubility of gelatin in water; e.g., on the chemical affinity of certain groups of the gelatin molecule for water. 5. Though crystalline egg albumin is highly soluble in water, the stability of collodion particles coated with crystalline egg albumin does not depend upon the affinity of the albumin molecule for water, but depends practically alone on the electrical double layer surrounding each particle. As soon as the P.D. of this double layer falls below 13 millivolts, the suspension is no longer stable. 6. The critical potential for the stability of suspensions of collodion particles coated with genuine egg albumin is the same as that for particles of boiled (denatured) white of egg. Since through the process of heating, egg albumin loses its solubility in water, it is inferred that egg albumin undergoes the same change when it forms a film around a solid particle like collodion. 7. The influence of electrolytes on the stability of suspensions of collodion particles coated with casein or edestin was similar to that of collodion particles coated with egg albumin. The experiments are, however, complicated by the fact that near the isoelectric point CaCl2 and even NaCl cause a suspension again at concentrations of about M/2 or 1 M, while still higher concentrations may cause a precipitation again. These latter effects have no connection with double layers, but belong probably in the category of solubility phenomena. 8. These experiments permit us to define more definitely the conditions for a general protective action of colloids. Protective colloids must be capable of forming a durable film on the surface of the suspended particles and the molecules constituting the film must have a higher attraction for the molecules of the solvent than for each other; in other words, they must possess true solubility. Only in this case can they prevent the precipitating action of low concentrations of electrolytes on particles which are kept in suspension solely by the high potentials of an electrical double layer. Thus gelatin films, in which the attraction of the molecules for water is preserved, have a general protective action, while crystalline egg albumin, casein, and edestin, which seem to lose their attraction for water when forming a film, have a protective action only under limited conditions stated in the paper.  相似文献   

2.
1. When a solution of a salt of gelatin or crystalline egg albumin is separated by a collodion membrane from a watery solution (free from protein) a potential difference is set up across the membrane in which the protein is positively charged in the case of protein-acid salts and in which the protein is negatively charged in the case of metal proteinates. The turning point is the isoelectric point of the protein. 2. Measurements of the pH of the (inside) protein solution and of the outside watery solution show that when equilibrium is established the value pH inside minus pH outside is positive in the case of protein-acid salts and negative in the case of metal proteinates. This is to be expected when the P.D. is caused by the establishment of a Donnan equilibrium, since in that case the pH should be lower outside than inside in the case of a protein-acid salt and should be higher outside than inside in the case of a metal proteinate. 3. At the isoelectric point where the electrical charge is zero the value of pH inside minus pH outside becomes also zero. 4. It is shown that a P.D. is established between suspended particles of powdered gelatin and the surrounding watery solution and that the sign of charge of the particles is positive when they contain gelatin-acid salts, while it is negative when the powdered particles contain metal gelatinate. At the isoelectric point the charge is zero. 5. Measurements of the pH inside the powdered particles and of the pH in the outside watery solution show that when equilibrium is established the value pH inside minus pH outside is positive when the powdered particles contain a gelatin-acid salt, while the value pH inside minus pH outside is negative when the powdered particles contain Na gelatinate. At the isoelectric point the value pH inside minus pH outside is zero. 6. The addition of neutral salts depresses the electrical charge of the powdered particles of protein-acid salts. It is shown that the addition of salts to a suspension of powdered particles of gelatin chloride also diminishes the value of pH inside minus pH outside. 7. The agreement between the values 58 (pH inside minus pH outside) and the P. D. observed by the Compton electrometer is not only qualitative but quantitative. This proves that the difference in the concentration of acid (or alkali, as the case may be) in the two phases is the only cause for the observed P.D. 8. The Donnan theory demands that the P.D. of a gelatin chloride solution should be 1½ times as great as the P.D. of a gelatin sulfate solution of the same pH and the same concentration (1 per cent) of originally isoelectric gelatin. This is found to be correct and it is also shown that the values of pH inside minus pH outside for the two solutions possess the ratio of 3:2. 9. All these measurements prove that the electrical charges of suspended particles of protein are determined exclusively by the Donnan equilibrium.  相似文献   

3.
1. By the use of the silver-silver chloride electrode, measurements have been made of the chloride ion concentrations of 1 per cent solutions of five proteins, containing from 0.001 N to 0.1 N hydrochloric acid. The hydrogen ion concentrations of the same solutions have been measured by the use of the hydrogen electrode. 2. The measurements indicate that the chlorides of gelatin, egg albumin, casein, edestin, and serum globulin are highly ionized electrolytes, ionizing to yield chloride ion and a positive protein-hydrogen ion. Their ionization is therefore similar to that of ammonium chloride. 3. The results do not support the idea that a protein chloride does not yield chloride ion on dissociation. They are not in agreement with the idea that the depressing effect of an excess of HCl on the viscosity and other colloidal properties of a protein chloride solution is due to a repression of the ionization of the protein chloride. The results are, however, in complete accord with the theory of colloidal behavior advocated by Loeb.  相似文献   

4.
1. This paper gives measurements of the influence of various electrolytes on the cataphoretic P.D. of particles of collodion coated with gelatin, of particles of casein, and of particles of boiled egg albumin in water at different pH. The influence of the same electrolyte was about the same in all three proteins. 2. It was found that the salts can be divided into two groups according to their effect on the P.D. at the isoelectric point. The salts of the first group including salts of the type of NaCl, CaCl2, and Na2SO4 affect the P.D. of proteins at the isoelectric point but little; the second group includes salts with a trivalent or tetravalent ion such as LaCl3 or Na4Fe(CN)6. These latter salts produce a high P.D. on the isoelectric particles, LaCl3 making them positively and Na4Fe(CN)6 making them negatively charged. This difference in the action of the two groups of salts agrees with the observations on the effect of the same salts on the anomalous osmosis through collodion membranes coated with gelatin. 3. At pH 4.0 the three proteins have a positive cataphoretic charge which is increased by LaCl3 but not by NaCl or CaCl2, and which is reversed by Na4Fe(CN)6, the latter salt making the cataphoretic charge of the particles strongly negative. 4. At pH 5.8 the protein particles have a negative cataphoretic charge which is strongly increased by Na4Fe(CN)6 but practically not at all by Na2SO4 or NaCl, and which is reversed by LaCl3. the latter salt making the cataphoretic charge of the particles strongly positive. 5. The fact that electrolytes affect the cataphoretic P.D. of protein particles in the same way, no matter whether the protein is denatured egg albumin or a genuine protein like gelatin, furnishes proof that the solutions of genuine proteins such as crystalline egg albumin or gelatin are not diaphasic systems, since we shall show in a subsequent paper that proteins insoluble in water, e.g. denatured egg albumin, are precipitated when the cataphoretic P.D. falls below a certain critical value, while water-soluble proteins, e.g. genuine crystalline egg albumin or gelatin, stay in solution even if the P.D. of the particles falls below the critical P.D.  相似文献   

5.
1. It is shown that a neutral salt depresses the potential difference which exists at the point of equilibrium between a gelatin chloride solution contained in a collodion bag and an outside aqueous solution (without gelatin). The depressing effect of a neutral salt on the P.D. is similar to the depression of the osmotic pressure of the gelatin chloride solution by the same salt. 2. It is shown that this depression of the P.D. by the salt can be calculated with a fair degree of accuracy on the basis of Nernst''s logarithmic formula on the assumption that the P.D. which exists at the point of equilibrium is due to the difference of the hydrogen ion concentration on the opposite sides of the membrane. 3. Since this difference of hydrogen ion concentration on both sides of the membrane is due to Donnan''s membrane equilibrium this latter equilibrium must be the cause of the P.D. 4. A definite P.D. exists also between a solid block of gelatin chloride and the surrounding aqueous solution at the point of equilibrium and this P.D. is depressed in a similar way as the swelling of the gelatin chloride by the addition of neutral salts. It is shown that the P.D. can be calculated from the difference in the hydrogen ion concentration inside and outside the block of gelatin at equilibrium. 5. The influence of the hydrogen ion concentration on the P.D. of a gelatin chloride solution is similar to that of the hydrogen ion concentration on the osmotic pressure, swelling, and viscosity of gelatin solutions, and the same is true for the influence of the valency of the anion with which the gelatin is in combination. It is shown that in all these cases the P.D. which exists at equilibrium can be calculated with a fair degree of accuracy from the difference of the pH inside and outside the gelatin solution on the basis of Nernst''s logarithmic formula by assuming that the difference in the concentration of hydrogen ions on both sides of the membrane determines the P.D. 6. The P.D. which exists at the boundary of a gelatin chloride solution and water at the point of equilibrium can also be calculated with a fair degree of accuracy by Nernst''s logarithmic formula from the value pCl outside minus pCl inside. This proves that the equation x2 = y ( y + z) is the correct expression for the Donnan membrane equilibrium when solutions of protein-acid salts with monovalent anion are separated by a collodion membrane from water. In this equation x is the concentration of the H ion (and the monovalent anion) in the water, y the concentration of the H ion and the monovalent anion of the free acid in the gelatin solution, and z the concentration of the anion in combination with the protein. 7. The similarity between the variation of P.D. and the variation of the osmotic pressure, swelling, and viscosity of gelatin, and the fact that the Donnan equilibrium determines the variation in P.D. raise the question whether or not the variations of the osmotic pressure, swelling, and viscosity are also determined by the Donnan equilibrium.  相似文献   

6.
1. It is well known that neutral salts depress the osmotic pressure, swelling, and viscosity of protein-acid salts. Measurements of the P.D. between gelatin chloride solutions contained in a collodion bag and an outside aqueous solution show that the salt depresses the P.D. in the same proportion as it depresses the osmotic pressure of the gelatin chloride solution. 2. Measurements of the hydrogen ion concentration inside the gelatin chloride solution and in the outside aqueous solution show that the difference in pH of the two solutions allows us to calculate the P.D. quantitatively on the basis of the Nernst formula See PDF for Equation if we assume that the P.D. is due to a difference in the hydrogen ion concentration on the two sides of the membrane. 3. This difference in pH inside minus pH outside solution seems to be the consequence of the Donnan membrane equilibrium, which only supposes that one of the ions in solution cannot diffuse through the membrane. It is immaterial for this equilibrium whether the non-diffusible ion is a crystalloid or a colloid. 4. When acid is added to isoelectric gelatin the osmotic pressure rises at first with increasing hydrogen ion concentration, reaches a maximum at pH 3.5, and then falls again with further fall of the pH. It is shown that the P.D. of the gelatin chloride solution shows the same variation with the pH (except that it reaches its maximum at pH of about 3.9) and that the P.D. can be calculated from the difference of pH inside minus pH outside on the basis of Nernst''s formula. 5. It was found in preceding papers that the osmotic pressure of gelatin sulfate solutions is only about one-half of that of gelatin chloride or gelatin phosphate solutions of the same pH and the same concentration of originally isoelectric gelatin; and that the osmotic pressure of gelatin oxalate solutions is almost but not quite the same as that of the gelatin chloride solutions of the same pH and concentration of originally isoelectric gelatin. It was found that the curves for the values for P.D. of these four gelatin salts are parallel to the curves of their osmotic pressure and that the values for pH inside minus pH outside multiplied by 58 give approximately the millivolts of these P.D. In this preliminary note only the influence of the concentration of the hydrogen ions on the P.D. has been taken into consideration. In the fuller paper, which is to follow, the possible influence of the concentration of the anions on this quantity will have to be discussed.  相似文献   

7.
1. It is shown that collodion membranes which have received one treatment with a 1 per cent gelatin solution show for a long time (if not permanently) afterwards a different osmotic behavior from collodion membranes not treated with gelatin. This difference shows itself only towards solutions of those electrolytes which have a tendency to induce a negative electrification of the water particles diffusing through the membrane, namely solutions of acids, acid salts, and of salts with trivalent and tetravalent cations; while the osmotic behavior of the two types of membranes towards solutions of salts and alkalies, which induce a positive electrification of the water particles diffusing through the membrane, is the same. 2. When we separate solutions of salts with trivalent cation, e.g. LaCl3 or AlCl3, from pure water by a collodion membrane treated with gelatin, water diffuses rapidly into the solution; while no water diffuses into the solution when the collodion membrane has received no gelatin treatment. 3. When we separate solutions of acid from pure water by a membrane previously treated with gelatin, negative osmosis occurs; i.e., practically no water can diffuse into the solution, while the molecules of solution and some water diffuse out. When we separate solutions of acid from pure water by collodion membranes not treated with gelatin, positive osmosis will occur; i.e., water will diffuse rapidly into the solution and the more rapidly the higher the valency of the anion. 4. These differences occur only in that range of concentrations of electrolytes inside of which the forces determining the rate of diffusion of water through the membrane are predominantly electrical; i.e., in concentrations from 0 to about M/16. For higher concentrations of the same electrolytes, where the forces determining the rate of diffusion are molecular, the osmotic behavior of the two types of membranes is essentially the same. 5. The differences in the osmotic behavior of the two types of membranes are not due to differences in the permeability of the membranes for solutes since it is shown that acids diffuse with the same rate through both kinds of membranes. 6. It is shown that the differences in the osmotic behavior of the two types of collodion membranes towards solutions of acids and of salts with trivalent cation are due to the fact that in the presence of these electrolytes water diffuses in the form of negatively charged particles through the membranes previously treated with gelatin, and in the form of positively charged particles through collodion membranes not treated with gelatin. 7. A treatment of the collodion membranes with casein, egg albumin, blood albumin, or edestin affects the behavior of the membrane towards salts with trivalent or tetravalent cations and towards acids in the same way as does a treatment with gelatin; while a treatment of the membranes with peptone prepared from egg albumin, with alanine, or with starch has no such effect.  相似文献   

8.
1. Amphoteric electrolytes form salts with both acids and alkalies. It is shown for two amphoteric electrolytes, Al(OH)3 and gelatin, that in the presence of an acid salt water diffuses through a collodion membrane into a solution of these substances as if its particles were negatively charged, while water diffuses into solutions of these electrolytes, when they exist as monovalent or bivalent metal salts, as if the particles of water were positively charged. The turning point for the sign of the electrification of water seems to be near or to coincide with the isoelectric point of these two ampholytes which is a hydrogen ion concentration of about 2 x 10–5 N for gelatin and about 10–7 for Al(OH)3. 2. In conformity with the rules given in a preceding paper the apparently positively charged water diffuses with less rapidity through a collodion membrane into a solution of Ca and Ba gelatinate than into a solution of Li, Na, K, or NH4 gelatinate of the same concentration of gelatin and of hydrogen ions. Apparently negatively charged water diffuses also with less rapidity through a collodion membrane into a solution of gelatin sulfate than into a solution of gelatin chloride or nitrate of the same concentration of gelatin and of hydrogen ions. 3. If we define osmotic pressure as that additional pressure upon the solution required to cause as many molecules of water to diffuse from solution to the pure water as diffuse simultaneously in the opposite direction through the membrane, it follows that the osmotic pressure cannot depend only on the concentration of the solute but must depend also on the electrostatic effects of the ions present and that the influence of ions on the osmotic pressure must be the same as that on the initial velocity of diffusion. This assumption was put to a test in experiments with gelatin salts for which a collodion membrane is strictly semipermeable and the tests confirmed the expectation.  相似文献   

9.
1. It has been shown in previous publications that when solutions of different concentrations of salts are separated by collodion-gelatin membranes from water, electrical forces participate in addition to osmotic forces in the transport of water from the side of the water to that of the solution. When the hydrogen ion concentration of the salt solution and of the water on the other side of the membrane is the same and if both are on the acid side of the isoelectric point of gelatin (e.g. pH 3.0), the electrical transport of water increases with the valency of the cation and inversely with the valency of the anion of the salt in solution. Moreover, the electrical transport of water increases at first with increasing concentration of the solution until a maximum is reached at a concentration of about M/32, when upon further increase of the concentration of the salt solution the transport diminishes until a concentration of about M/4 is reached, when a second rise begins, which is exclusively or preeminently the expression of osmotic forces and therefore needs no further discussion. 2. It is shown that the increase in the height of the transport curves with increase in the valency of the cation and inversely with the increase in the valency of the anion is due to the influence of the salt on the P.D. (E) across the membrane, the positive charge of the solution increasing in the same way with the valency of the ions mentioned. This effect on the P.D. increases with increasing concentration of the solution and is partly, if not essentially, the result of diffusion potentials. 3. The drop in the transport curves is, however, due to the influence of the salts on the P.D. (ε) between the liquid inside the pores of the gelatin membrane and the gelatin walls of the pores. According to the Donnan equilibrium the liquid inside the pores must be negatively charged at pH 3.0 and this charge is diminished the higher the concentration of the salt. Since the electrical transport is in proportion to the product of E x ε and since the augmenting action of the salt on E begins at lower concentrations than the depressing action on ε, it follows that the electrical transport of water must at first rise with increasing concentration of the salt and then drop. 4. If the Donnan equilibrium is the sole cause for the P.D. (ε) between solid gelatin and watery solution the transport of water through collodion-gelatin membranes from water to salt solution should be determined purely by osmotic forces when water, gelatin, and salt solution have the hydrogen ion concentration of the isoelectric point of gelatin (pH = 4.7). It is shown that this is practically the case when solutions of LiCl, NaCl, KCl, MgCl2, CaCl2, BaCl2, Na2SO4, MgSO4 are separated by collodion-gelatin membranes from water; that, however, when the salt has a trivalent (or tetravalent?) cation or a tetravalent anion a P.D. between solid isoelectric gelatin and water is produced in which the wall assumes the sign of charge of the polyvalent ion. 5. It is suggested that the salts with trivalent cation, e.g. Ce(NO3)3, form loose compounds with isoelectric gelatin which dissociate electrolytically into positively charged complex gelatin-Ce ions and negatively charged NO3 ions, and that the salts of Na4Fe(CN)6 form loose compounds with isoelectric gelatin which dissociate electrolytically into negatively charged complex gelatin-Fe(CN)6 ions and positively charged Na ions. The Donnan equilibrium resulting from this ionization would in that case be the cause of the charge of the membrane.  相似文献   

10.
It has been shown, within the probable limit of error of the methods of measurement employed, that the Donnan equilibrium determines the distribution of H and Cl ions between the cell and the surrounding fluid. This equilibrium is a consequence of the impermeability of the cell membrane to the inorganic cations of the cell. The mechanism responsible for this equilibrium is suggested as that concerned in the secretion of HCl by the cells of the gastric mucosa. If the salt concentration of the medium is low there may result from the Donnan equilibrium a thermodynamic P.D. of considerable magnitude. In the presence of low concentrations of electrolytes, this P.D. is to be regarded as positive in sign at reactions of the medium at which the cataphoretic charge of the cell is negative in sign. The explanation of this discrepancy in sign of charge may lie in the existence at an outer phase-boundary of a second Donnan equilibrium the nature of which is determined by the ionization of the protein of the cell membrane.  相似文献   

11.
1. The effect of eight salts, NaCl, Na2SO4, Na4Fe(CN)6, CaCl2, LaCl3, ThCl4, and basic and acid fuchsin on the cataphoretic P.D. between solid particles and aqueous solutions was measured near the point of neutrality of water (pH 5.8). It was found that without the addition of electrolyte the cataphoretic P.D. between particles and water is very minute near the point of neutrality (pH 5.8), often less than 10 millivolts, if care is taken that the solutions are free from impurities. Particles which in the absence of salts have a positive charge in water near the point of neutrality (pH 5.8) are termed positive colloids and particles which have a negative charge under these conditions are termed negative colloids. 2. If care is taken that the addition of the salt does not change the hydrogen ion concentration of the solution (which in these experiments was generally pH 5.8) it can be said in general, that as long as the concentration of salts is not too high, the anions of the salt have the tendency to make the particles more negative (or less positive) and that cations have the opposite effect; and that both effects increase with the increasing valency of the ions. As soon as a maximal P.D. is reached, which varies for each salt and for each type of particles, a further addition of salt depresses the P.D. again. Aside from this general tendency the effects of salts on the P.D. are typically different for positive and negative colloids. 3. Negative colloids (collodion, mastic, Acheson''s graphite, gold, and metal proteinates) are rendered more negative by low concentrations of salts with monovalent cation (e.g. Na) the higher the valency of the anion, though the difference in the maximal P.D. is slight for the monovalent Cl and the tetravalent Fe(CN)6 ions. Low concentrations of CaCl2 also make negative colloids more negative but the maximal P.D. is less than for NaCl; even LaCl3 increases the P.D. of negative particles slightly in low concentrations. ThCl4 and basic fuchsin, however, seem to make the negative particles positive even in very low concentrations. 4. Positive colloids (ferric hydroxide, calcium oxalate, casein chloride—the latter at pH 4.0) are practically not affected by NaCl, are rendered slightly negative by high concentrations of Na2SO4, and are rendered more negative by Na4Fe(CN)6 and acid dyes. Low concentrations of CaCl2 and LaCl3 increase the positive charge of the particles until a maximum is reached after which the addition of more salt depresses the P.D. again. 5. It is shown that alkalies (NaOH) act on the cataphoretic P.D. of both negative and positive particles as Na4Fe(CN)6 does at the point of neutrality. 6. Low concentrations of HCl raise the cataphoretic P.D. of particles of collodion, mastic, graphite, and gold until a maximum is reached, after which the P.D. is depressed by a further increase in the concentration of the acid. No reversal in the sign of charge of the particle occurs in the case of collodion, while if a reversal occurs in the case of mastic, gold, and graphite, the P.D. is never more than a few millivolts. When HCl changes the chemical nature of the colloid, e.g. when HCl is added to particles of amphoteric electrolytes like sodium gelatinate, a marked reversal will occur, on account of the transformation of the metal proteinate into a protein-acid salt. 7. A real reversal in the sign of charge of positive particles occurs, however, at neutrality if Na4Fe(CN)6 or an acid dye is added; and in the case of negative colloids when low concentrations of basic dyes or minute traces of ThCl4 are added. 8. Flocculation of the suspensions by salts occurs when the cataphoretic P.D. reaches a critical value which is about 14 millivolts for particles of graphite, gold, or mastic or denatured egg albumin; while for collodion particles it was about 16 millivolts. A critical P.D. of about 15 millivolts was also observed by Northrop and De Kruif for the flocculation of certain bacteria.  相似文献   

12.
1. It has been found that the ratios of the total concentrations of Ca, Mg, K, Zn, inside and outside of gelatin particles do not agree with the ratios calculated according to Donnan''s theory from the hydrogen ion activity ratios. 2. E.M.F. measurements of Zn and Cl electrode potentials in such a system show, however, that the ion activity ratios are correct, so that the discrepancy must be due to a decrease in the ion concentration by the formation of complex ions with the protein. 3. This has been confirmed in the case of Zn by Zn potential measurements in ZnCl2 solutions containing gelatin. It has been found that in 10 per cent gelatin containing 0.01 M ZnCl2 about 60 per cent of the Zn++ is combined with the gelatin. 4. If the activity ratios are correctly expressed by Donnan''s equation, then the amount of any ion combined with a protein can be determined without E.M.F. measurements by determining its distribution in a proper system. If the activity ratio of the hydrogen ion and the activity of the other ion in the aqueous solution are known, then the activity and hence the concentration of the ion in the protein solution can be calculated. The difference between this and the total molar concentration of the ion in the protein represents the amount combined with the protein. 5. It has been shown that in the case of Zn the values obtained in this way agree quite closely with those determined by direct E.M.F. measurements. 6. The combination with Zn is rapidly and completely reversible and hence is probably not a surface effect. 7. Since the protein combines more with Zn than with Cl, the addition of ZnCl2 to isoelectric gelatin should give rise to an unequal ion distribution and hence to an increase in swelling, osmotic pressure, and viscosity. This has been found to be the case.  相似文献   

13.
1. A comparative study has been made of the diffusibility of calcium in solutions of crystalline egg albumin, serum globulin, and human blood serum. 2. In all three of these solutions, at pH 7.4, molal Ca concentrations within the membrane are greater than the calcium concentrations in the outside solutions, quite in accordance with the Donnan theory. 3. At pH 7.4, the ratio of See PDF for Structure varies directly with the protein concentration whether the solution be one of egg albumin, serum globulin, or blood serum. This is also in accordance with the Donnan theory. 4. On the acid side of the isoelectric point of the proteins, the concentration of Ca outside becomes greater than the concentration in the solution of blood serum or pure protein, as is demanded by the Donnan theory. 5. The magnitude of the Ca ratios on the alkaline and acid sides of the isoelectric points is probably the resultant of the Donnan equilibrium and the formation of complex Ca-protein ions. Northrop and Kunitz have shown the probability of the existence of such ions in the case of Zn++, K+, and Li+, where satisfactory electrodes have been developed for E.M.F. measurements.  相似文献   

14.
1. It is shown that when part of the gelatin in a solution of gelatin chloride is replaced by particles of powdered gelatin (without change of pH) the membrane potential of the solution is influenced comparatively little. 2. A measurement of the hydrogen ion concentration of the gelatin chloride solution and the outside aqueous solution with which the gelatin solution is in osmotic equilibrium, shows that the membrane potential can be calculated from this difference of hydrogen ion concentration with an accuracy of half a millivolt. This proves that the membrane potential is due to the establishment of a membrane equilibrium and that the powdered particles participate in this membrane equilibrium. 3. It is shown that a Donnan equilibrium is established between powdered particles of gelatin chloride and not too strong a solution of gelatin chloride. This is due to the fact that the powdered gelatin particles may be considered as a solid solution of gelatin with a higher concentration than that of the weak gelatin solution in which they are suspended. It follows from the theory of membrane equilibria that this difference in concentration of protein ions must give rise to potential differences between the solid particles and the weaker gelatin solution. 4. The writer had shown previously that when the gelatin in a solution of gelatin chloride is replaced by powdered gelatin (without a change in pH), the osmotic pressure of the solution is lowered the more the more dissolved gelatin is replaced by powdered gelatin. It is therefore obvious that the powdered particles of gelatin do not participate in the osmotic pressure of the solution in spite of the fact that they participate in the establishment of the Donnan equilibrium and in the membrane potentials. 5. This paradoxical phenomenon finds its explanation in the fact that as a consequence of the participation of each particle in the Donnan equilibrium, a special osmotic pressure is set up in each individual particle of powdered gelatin which leads to a swelling of that particle, and this osmotic pressure is measured by the increase in the cohesion pressure of the powdered particles required to balance the osmotic pressure inside each particle. 6. In a mixture of protein in solution and powdered protein (or protein micellæ) we have therefore two kinds of osmotic pressure, the hydrostatic pressure of the protein which is in true solution, and the cohesion pressure of the aggregates. Since only the former is noticeable in the hydrostatic pressure which serves as a measure of the osmotic pressure of a solution, it is clear why the osmotic pressure of a protein solution must be diminished when part of the protein in true solution is replaced by aggregates.  相似文献   

15.
1. Collodion bags coated with gelatin on the inside were filled with a M/256 solution of neutral salt (e.g., NaCl, CaCl2, CeCl3, or Na2SO4) made up in various concentrations of HNO3 (varying from N/50,000 to N/100). Each collodion bag was put into an HNO3 solution of the same concentration as that inside the bag but containing no salt. In this case water diffuses from the outside solution (containing no salt) into the inside solution (containing the salt) with a relative initial velocity which can be expressed by the following rules: (a) Water diffuses into the salt solution as if the particles of water were negatively charged and as if they were attracted by the cation and repelled by the anion of the salt with a force increasing with the valency of the ion. (b) The initial rate of the diffusion of water is a minimum at the hydrogen ion concentration of about N/50,000 HCl (pH 4.7, which is the point at which gelatin is not ionized), rises with increasing hydrogen ion concentration until it reaches a maximum and then diminishes again with a further rise in the initial hydrogen ion concentration. 2. The potential differences between the salt solution and the outside solution (originally free from salt) were measured after the diffusion had been going on for 1 hour; and when these values were plotted as ordinates over the original pH as abscissae, the curves obtained were found to be similar to the osmotic rate curves. This confirms the view expressed by Girard) Bernstein, Bartell, and Freundlich that these cases of anomalous osmosis are in reality cases of electrical endosmose where the driving force is a P.D. between the opposite sides of the membrane. 3. The question arose as to the origin of these P. D. and it was found that the P.D. has apparently a double origin. Certain features of the P.D. curve, such as the rise and fall with varying pH, seem to be the consequence of a Donnan equilibrium which leads to some of the free HNO3 being forced from the solution containing salt into the outside solution containing no (or less) salt. This difference of the concentration of HNO3, on the opposite sides of the membrane leads to a P.D. which in conformity with Nernst''s theory of concentration cells should be equal to 58 x (pH inside minus pH outside) millivolts at 18°C. The curves of the values of (pH inside minus pH outside) when plotted as ordinates over the original pH as abscissae lead to curves resembling those for the P. D. in regard to location of minimum and maximum. 4. A second source of the P.D. seems to be diffusion potentials, which exist even if no membranes are present and which seem to be responsible for the fact that the rate of diffusion of negatively charged water into the salt solution increases with the valency of the cation and diminishes with the valency of the anion of the salt. 5. The experiments suggest the possibility that the establishment of a Donnan equilibrium between membrane and solution is one of the factors determining the Helmholtzian electrical double layer, at least in the conditions of our experiments.  相似文献   

16.
1. The globulin prepared from ox serum by dilution and precipitation with carbon dioxide has been found, by electrometric titration experiments, to behave like an amphoteric electrolyte, reacting stoichiometrically with acids and bases. 2. The potential difference developed between a solution of globulin chloride, phosphate, or acetate and a solution of the corresponding acid, free from protein, separated from the globulin by a collodion membrane, was found to be influenced by hydrogen ion concentration and salt concentration in the way predicted by Donnan''s theory of membrane equilibrium. In experiments with sodium globulinate and sodium hydroxide it was found that the potential difference could be similarly explained. 3. The osmotic pressure of such solutions could be qualitatively accounted for by the Donnan theory, but exhibited a discrepancy which is explicable by analogy with certain experiments of Loeb on gelatin. 4. The application of Loeb''s theory of colloidal behavior, which had previously been found to hold in the case of gelatin, casein, egg albumin, and edestin, has thus been extended to another protein, serum globulin.  相似文献   

17.
1. When a 1 per cent solution of a metal gelatinate, e.g. Na gelatinate, of pH = 8.4 is separated from distilled water by a collodion membrane, water will diffuse into the solution with a certain rate which can be measured by the rise of the level of the liquid in a manometer. When to such a solution alkali or neutral salt is added the initial rate with which water will diffuse into the solution is diminished and the more so the more alkali or salt is added. This depressing effect of the addition of alkali and neutral salt is greater when the cation of the electrolyte added is bivalent than when it is monovalent. This seems to indicate that the depressing effect is due to the cation of the electrolyte added. 2. When a neutral M/256 solution of a salt with monovalent cation (e.g. Na2SO4 or K4Fe(CN)6, etc.) is separated from distilled water by a collodion membrane, water will diffuse into the solution with a certain initial rate. When to such a solution alkali or neutral salt is added, the initial rate with which water will diffuse into the solution is diminished and the more so the more alkali or salt is added. The depressing effect of the addition of alkali or neutral salt is greater when the cation of the electrolyte added is bivalent than when it is monovalent. This seems to indicate that the depressing effect is due to the cation of the electrolyte added. The membranes used in these experiments were not treated with gelatin. 3. It can be shown that water diffuses through the collodion membrane in the form of positively charged particles under the conditions mentioned in (1) and (2). In the case of diffusion of water into a neutral solution of a salt with monovalent or bivalent cation the effect of the addition of electrolyte on the rate of diffusion can be explained on the basis of the influence of the ions on the electrification and the rate of diffusion of electrified particles of water. Since the influence of the addition of electrolyte seems to be the same in the case of solutions of metal gelatinate, the question arises whether this influence of the addition of electrolyte cannot also be explained in the same way, and, if this be true, the further question can be raised whether this depressing effect necessarily depends upon the colloidal character of the gelatin solution, or whether we are not dealing in both cases with the same property of matter; namely, the influence of ions on the electrification and rate of diffusion of water through a membrane. 4. It can be shown that the curve representing the influence of the concentration of electrolyte on the initial rate of diffusion of water from solvent into the solution through the membrane is similar to the curve representing the permanent osmotic pressure of the gelatin solution. The question which has been raised in (3) should then apply also to the influence of the concentration of ions upon the osmotic pressure and perhaps other physical properties of gelatin which depend in a similar way upon the concentration of electrolyte added; e.g., swelling. 5. When a 1 per cent solution of a gelatin-acid salt, e.g. gelatin chloride, of pH 3.4 is separated from distilled water by a collodion membrane, water will diffuse into the solution with a certain rate. When to such a solution acid or neutral salt is added—taking care in the latter case that the pH is not altered—the initial rate with which water will diffuse into the solution is diminished and the more so the more acid or salt is added. Water diffuses into a gelatin chloride solution through a collodion membrane in the form of negatively charged particles. 6. When we replace the gelatin-acid salt by a crystalloidal salt, which causes the water to diffuse through the collodion membrane in the form of negatively charged particles, e.g. M/512 Al2Cl6, we find that the addition of acid or of neutral salt will diminish the initial rate with which water diffuses into the M/512 solution of Al2Cl6, in a similar way as it does in the case of a solution of a gelatin-acid salt.  相似文献   

18.
1. These experiments confirm the conclusion that protein solutions are true solutions consisting of isolated ions and molecules, and that these solutions may or may not contain in addition solid submicroscopic particles capable of occluding water. 2. The typical influence of electrolytes on the osmotic pressure of protein solutions is due to the isolated protein ions since these alone are capable of causing a Donnan equilibrium across a membrane impermeable to the protein ions but permeable to most crystalloidal ions. 3. The similar influence of electrolytes on the viscosity of protein solutions is due to the submicroscopic solid protein particles capable of occluding water since the amount of water occluded by (or the amount of swelling of) these particles is regulated by the Donnan equilibrium. 4. These ideas are supported by the fact that the more the submicroscopic solid particles contained in a protein solution or suspension are transformed into isolated ions (e.g., by keeping gelatin solution for 1 hour or more at 45°C.) the more the viscosity of the solution is diminished while the osmotic pressure is increased, and vice versa.  相似文献   

19.
1. Experiments on anomalous osmosis suggested that salts with trivalent cations, e.g. LaCl3, caused isoelectric gelatin to be positively charged, and salts with tetravalent anions, e.g. Na4Fe(CN)6, caused isoelectric gelatin to be negatively charged. In this paper direct measurements of the P.D. between gels of isoelectric gelatin and an aqueous solution as well as between solutions of isoelectric gelatin in a collodion bag and an aqueous solution are published which show that this suggestion was correct. 2. Experiments on anomalous osmosis suggested that salts like MgCl2, CaCl2, NaCl, LiCl, or Na2SO4 produce no charge on isoelectric gelatin and it is shown in this paper that direct measurements of the P.D. support this suggestion. 3. The question arose as to the nature of the mechanism by which trivalent and tetravalent ions cause the charge of isoelectric proteins. It is shown that salts with such ions act on isoelectric gelatin in a way similar to that in which acids or alkalies act, inasmuch as in low concentrations the positive charge of isoelectric gelatin increases with the concentration of the LaCl3 solution until a maximum is reached at a concentration of LaCl3 of about M/8,000; from then on a further increase in the concentration of LaCl3 diminishes the charge again. It is shown that the same is true for the action of Na4Fe(CN)6. From this it is inferred that the charge of the isoelectric gelatin under the influence of LaCl3 and Na4Fe(CN)6 at the isoelectric point is due to an ionization of the isoelectric protein by the trivalent or tetravalent ions. 4. This ionization might be due to a change of the pH of the solution, but experiments are reported which show that in addition to this influence on pH, LaCl3 causes an ionization of the protein in some other way, possibly by the formation of a complex cation, gelatin-La. Na4Fe(CN)6 might probably cause the formation of a complex anion of the type gelatin-Fe(CN)6. Isoelectric gelatin seems not to form such compounds with Ca, Na, Cl, or SO4. 5. Solutions of LaCl3 and Na4Fe(CN)6 influence the osmotic pressure of solutions of isoelectric gelatin in a similar way as they influence the P.D., inasmuch as in lower concentrations they raise the osmotic pressure of the gelatin solution until a maximum is reached at a concentration of about M/2,048 LaCl3 and M/4,096 Na4Fe(CN)6. A further increase of the concentration of the salt depresses the osmotic pressure again. NaCl, LiCl, MgCl2, CaCl2, and Na2SO4 do not act in this way. 6. Solutions of LaCl3 have only a depressing effect on the P.D. and osmotic pressure of gelatin chloride solutions of pH 3.0 and this depressing effect is quantitatively identical with that of solutions of CaCl2 and NaCl of the same concentration of Cl.  相似文献   

20.
Electromotive force measurements of cells without liquid junction, of the type Ag, AgCl, HCl + protein, H2, have been made at 30°C. with the proteins gelatin, edestin, and casein in 0.1 M hydrochloric acid. The data are consistent with the assumptions of a constant combining capacity of each protein for hydrogen ion, no combination with chloride ion, and Failey''s principle of a linear variation of the logarithm of the mean activity coefficient of the acid with increasing protein concentration. The combining capacities for hydrogen ion so obtained are 13.4 x 10–4 for edestin, 9.6 x 10–4 for gelatin, and 8.0 x 10–4 for casein, in equivalents of combined H+ per gm. of protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号