首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DEVELOPMENT OF THE FLAGELLAR APPARATUS OF NAEGLERIA   总被引:19,自引:15,他引:4       下载免费PDF全文
Flagellates of Naegleria gruberi have an interconnected flagellar apparatus consisting of nucleus, rhizoplast and accessory filaments, basal bodies, and flagella. The structures of these components have been found to be similar to those in other flagellates. The development of methods for obtaining the relatively synchronous transformation of populations of Naegleria amebae into flagellates has permitted a study of the development of the flagellar apparatus. No indications of rhizoplast, basal body, or flagellum structures could be detected in amebae. A basal body appears and assumes a position at the cell surface with its filaments perpendicular to the cell membrane. Axoneme filaments extend from the basal body filaments into a progressive evagination of the cell membrane which becomes the flagellum sheath. Continued elongation of the axoneme filaments leads to differentiation of a fully formed flagellum with a typical "9 + 2" organization, within 10 min after the appearance of basal bodies.  相似文献   

2.
In most freshwater ecosystems, aquatic insects are dominant in terms of diversity; however, there is a disproportionately low number of records of alien species when compared to other freshwater organisms. The Chironomidae is one aquatic insect family that includes some examples of alien species around the world. During a study on aquatic insects in Amazonas state (Brazil), we collected specimens of Chironomidae that are similar, at the morphological level, to Chironomus kiiensis Tokunaga and Chironomus striatipennis Kieffer, both with distributions restricted to Asia. The objectives of this study were to provide morphological information on this Chironomus population, to investigate its identity using DNA barcoding and, to provide bionomic information about this species. Chironomus DNA barcode data were obtained from GenBank and Barcode of Life Data Systems (BOLD) and, together with our data, were analyzed using the neighbor-joining method with 1000 bootstrap replicates and the genetic distances were estimated using the Kimura-2-parameter. At the morphological level, the Brazilian population cannot be distinguished either from Chironomus striatipennis or Chironomus kiiensis, configuring a species complex but, at the molecular level our studied population is placed in a clade together with Chironomus striatipennis, from South Korea. Bionomic characteristics of the Brazilian Chironomus population differ from the ones of Chironomus kiiensis from Japan, the only species in this species complex with bionomic information available. The Brazilian Chironomus population has a smaller size, the double of the number of eggs and inhabits oligotrophic water, in artificial container. In the molecular analysis, populations of Chironomus striatipennis and Chironomus kiiensis are placed in a clade, formed by two groups: Group A (which includes populations from both named species, from different Asiatic regions and our Brazilian population) and Group B (with populations of Chironomus kiiensis from Japan and South Korea). Genetic distance between the Brazilian population and specimens in Group A suggests that it was recently introduced in Brazil, and that its country of origin is probably South Korea.  相似文献   

3.
Spontaneous aggregations of flagellates are formed under the cover-glass because the organisms are attracted to and remain in regions where the concentration of dissolved oxygen is less than the saturation concentration under atmospheric partial pressure. These regions of lessened oxygen content arise towards the center of the liquid beneath the cover-glass, owing to the oxygen consumed by the flagellates in respiration not being replaced here by the solution of atmospheric oxygen, as it is along the edges of the liquid. The flagellates, however, are insensitive to the attraction of regions of lessened oxygen concentration when the oxygen concentration throughout the liquid is above a certain value. Therefore, for the aggregations to form, either the initial concentration of dissolved oxygen must be below this limiting value, or an interval of time must first elapse after the making of the preparation until the respiration of the organisms has reduced the oxygen concentration throughout the liquid down to this limiting value. The aggregations will then form because the flagellates have become positively chemotropic to the lower concentration of oxygen at the center of the liquid. Once established, such an aggregation of flagellates does not remain long in the same form. An area free from flagellates appears at the center of the aggregation so that the organisms lie in a circular band surrounding the clear area. The latter increases in size and its bordering band of flagellates in diameter, the band gradually becoming less circular and more square in shape, if the cover-glass is a square one. The clear central area is a region where the oxygen consumption of the flagellates has reduced the oxygen content to such a low value that the organisms are forced to leave the region. They collect in a band where the concentration of dissolved oxygen is an optimum for them. It is the equilibrium position between the oxygen consumed at the center and that diffusing in from the edges of the liquid. As the consumption at the center is more rapid than the replacement from the edge, the flagellate band moves outwards until it becomes stationary at a position where the rates of consumption and replacement of oxygen are equal. Although the flagellates collect in this manner in regions of optimum oxygen concentration, yet greater concentrations of dissolved oxygen have no injurious effect on them. Concentrations of dissolved oxygen lower than the optimum have the effect of inhibiting the movement of the flagellates. They recover their activity, however, immediately they are given access to dissolved oxygen again. Work done in the past on chemotropism of flagellates will have to be revised in the light of the above facts, since the oxygen content of solutions used has never been taken into account.  相似文献   

4.
In a very dry environment (0% r.h.) the case plays an important role in the physiology of the Tinea pellionella larva. Absence of the case leads to a reduction of oxygen consumption and a great loss of body water. At 0% r.h. the rate of water loss from a larva without its case, is twice that from a larva remaining within its case.In a very humid environment (r.h. higher than 95%) the case absorbs a very large quantity of water and becomes very heavy, but it does not interfere with larval physiology. With or without their cases the weight of the larvae stays stable, and their oxygen consumption does not change.When the humidity changes abruptly, the case acts as a buffer and assists in the regulation of the water balance of the larva. If the humidity decreases the case slows the rate of body water loss; if the humidity increases, it very quickly builds up a reserve of atmospheric water around the larva's body.  相似文献   

5.
在两栖类爪蟾胚胎发育中,由受精引起的皮层转动造成了受精卵的背腹极性。为了研究受精卵细胞质的不均一分布对胚胎体轴形成的影响,我们进行了16细胞期动物极背、腹方裂球的外植和异位移植实验。16细胞期的动物极背方裂球在外植和移植到腹方位置后都表现出背方特征,如外植块培养到原肠中期时伸长,背方裂球在移植到腹方后引发第二体轴等;而16细胞期动物极腹方裂球移植到背方后其发育命运则遵循背方裂球的命运,参与背方结构的形成。我们认为在16细胞期,动物极背、腹方的裂球由于包含着不同的卵质,因而在发育能力上已经具有背、腹的差异。  相似文献   

6.
THE FINE STRUCTURE OF GIARDIA MURIS   总被引:10,自引:1,他引:9       下载免费PDF全文
Giardia is a noninvasive intestinal zooflagellate. This electron microscope study demonstrates the fine structure of the trophozoite of Giardia muris in the lumen of the duodenum of the mouse as it appears after combined glutaraldehyde and acrolein fixation and osmium tetroxide postfixation. Giardia muris is of teardrop shape, rounded anteriorly, with a convex dorsal surface and a concave ventral one. The anterior two-thirds of the ventral surface is modified to form an adhesive disc. The adhesive disc is divided into 2 lobes whose medial surfaces form the median groove. The marginal grooves are the spaces between the lateral crests of the adhesive disc and a protruding portion of the peripheral cytoplasm. The organism has 2 nuclei, 1 dorsal to each lobe of the adhesive disc. Between the anterior poles of the nuclei, basal bodies give rise to 8 paired flagella. The median body, unique to Giardia, is situated between the posterior poles of the nuclei. The cytoplasm contains 300-A granules that resemble particulate glycogen, 150- to 200-A granules that resemble ribosomes, and fusiform clefts. The dorsal portion of the cell periphery is occupied by a linear array of flattened vacuoles, some of which contain clusters of dense particles. The ventrolateral cytoplasm is composed of regularly packed coarse and fine filaments which extend as a striated flange around the adhesive disc. The adhesive disc is composed of a layer of microtubules which are joined to the cytoplasm by regularly spaced fibrous ribbons. The plasma membrane covers the ventral and lateral surfaces of the disc. The median body consists of an oval aggregate of curved microtubules. Microtubules extend ventrally from the median body to lie alongside the caudal flagella. The intracytoplasmic portions of the caudal, lateral, and anterior flagella course considerable distances, accompanied by hollow filaments adjacent to their outer doublets. The intracytoplasmic portions of the anterior flagella are accompanied also by finely granular rodlike bodies. No structures identifiable as mitochondria, smooth endoplasmic reticulum, the Golgi complex, lysosomes, or axostyles are recognized.  相似文献   

7.
The nipple array is a submicrometre-scale structure found on the cuticle surfaces of various invertebrate taxa. Corneal nipples are an antiglare surface in nocturnal insects, but the functional significance of the nipple array has not been experimentally investigated for aquatic organisms. Using nanopillar sheets as a mimetic model of the nipple array, we demonstrated that significantly fewer bubbles adhered to the nanopillar surface versus a flat surface when the sheets were hydrophilic. Many more bubbles adhered to the hydrophobic surface than the hydrophilic surfaces. Bubbles on the body surface may cause buoyancy problems, movement interference and water flow occlusion. Here, bubble repellence is proposed as a function of the hydrophilic nipple array in aquatic invertebrates and its properties are considered based on bubble adhesion energy.  相似文献   

8.
Despite continuous efforts since the 1950s and more recent advances in culturing flagellates and nonflagellate cells of the prymnesiophyte Phaeocystis, a number of different life‐cycle models exist today that appear to apply for P. globosa Scherff. and P. antarctica G. Karst., both spherical colony formers. In one such model, this life cycle consists of three different flagellates and one nonmotile cell stage that is embedded in carbohydrate matrix‐forming colonies of different sizes and forms. Recently, noncolonial aggregates of diploid nonmotile cells attached to surfaces of diatoms were put forward as a new stage in the sexual life cycle of P. antarctica. However, it can be discussed that these “attached aggregates” (AAs) are an intermediate between motile diploid flagellates, with their well‐known tendency to adhere to surfaces, and the young spherical colony with its diploid nonmotile cells, which in nature is commonly found attached to diatoms. A life‐cycle model pertaining to both P. globosa and P. antarctica is presented.  相似文献   

9.
Humoral encapsulation (“melanization”) represents the predominant defence reaction of Chironomus larvae against injected bacteria. Only low levels of phagocytic activity were observed; cellular encapsulation and nodule formation were completely missing due to low numbers of haemocytes. No other humoral antibacterial activity was detected in normal Chironomus haemolymph and even haemolymph of preinjected (“immunized”) Chironomus larvae showed little inhibition of bacterial growth on agar test plates.Low cellular and lytic activity of Chironomus haemolymph against bacteria is well compensated for by its fast and efficient capacity of humoral encapsulation. Within 5–10 min, even high numbers of injected bacteria (up to 105 per larva) were surrounded by capsular material. Within this range of injection dose, the fates of pathogenic and non-pathogenic strains were identical, and bacteria which are highly pathogenic for many other insects, e.g. larvae of Galleria mellonella, proved to be harmless to Chironomus larvae. The rapidity of humoral encapsulation may prevent the release of toxins or enzymes by which pathogenic bacteria normally damage its host and weaken its immune system.  相似文献   

10.
The oxidation-reduction potential of the Cypridina luciferin-oxyluciferin system determined by a method of "bracketing" lies somewhere between that of anthraquinone 2-6-di Na sulfonate (Eo '' at pH of 7.7 = –.22) which reduces luciferin, and quinhydrone (Eo '' at pH of 7.7 = +.24), which oxidizes luciferin. Systems having an Eo '' value between –.22 and +.24 volt neither reduce oxyluciferin nor oxidize luciferin. If the luciferin-oxyluciferin system were truly reversible considerable reduction and oxidation should occur between –.22 and +.24. The system appears to be an irreversible one, with both "apparent oxidation" and "apparent reduction potentials" in Conant''s sense. Hydrosulfites, sulfides, CrCl2, TiCl3, and nascent hydrogen reduce oxyluciferin readily in absence of oxygen but without luminescence. Luminescence only appears in water solution if luciferin is oxidized by dissolved oxygen in presence of luciferase. Rapid oxidation of luciferin by oxygen without luciferase or oxidation by K3Fe(CN)6 in presence of luciferase but without oxygen never gives luminescence.  相似文献   

11.
Global climate change affects aquatic habitats in a number of ways that pose challenges for aquatic insect populations. Increasing water temperature and corresponding decreases in dissolved oxygen can impact respiratory behaviors, even in air-breathing aquatic taxa. Crawling water beetles (Coleoptera: Haliplidae) exhibit a combined respiratory strategy that employs an air store that is periodically replenished at the water surface. The frequency at which beetles surface to replenish the bubble is determined both by oxygen demand and by the capacity of the air store to uptake oxygen from the surrounding water via diffusion. However, little is known of how changes in water temperature and dissolved oxygen will affect submersion time. We investigated this question in Peltodytes callosus, a species of crawling water beetle that is widely distributed across the American West. We manipulated temperature and dissolved oxygen to mimic changes associated with global climate change and recorded the time between surfacing events. We found that beetles stayed submerged for shorter durations in response to both increasing water temperature and decreasing dissolved oxygen. Our results suggest that beetles may be able to modify their surfacing behavior to respond to climate-induced changes in water quality.  相似文献   

12.
A new cryptobiid flagellates, Cryptobia udonellae sp. n., is described from the excretory channels of Udonella murmanica. The body of flagellates is spindle-shaped. The flagellar pocket is subapical. Two flagella emerge from the pocket. One flagellum turns anterior and is forward-directed; the other flagellum is directed posterior and close to the ventral cell surface. The ventral groove is well developed. The cytostome opens just anterior to the flagellar pocket. The cytostome leads to the short cytopharynx. In the excretory channel of worms the flagellates C. udonellae sp. n. are attached to microvilli of epithelium or lay free in the lumen. Both flagellates have been studied with TEM. The unusual parasite system which involves organisms of four different phylums of animals has been described for the first time.  相似文献   

13.
The P.D. across the protoplasm of Valonia macrophysa has been studied while the cells were exposed to artificial solutions resembling sea water in which the concentration of KCl was varied from 0 to 0.500 mol per liter. The P.D. across the protoplasm is decreased by lowering and increased by raising the concentration of KCl in the external solution. Changes in P.D. with time when the cell is treated with KCl-rich sea water resemble those observed with cells exposed to Valonia sap. Varying the reaction of natural sea water from pH 5 to pH 10 has no appreciable effect on the P.D. across Valonia protoplasm. Similarly, varying the pH of KCl-rich sea water within these limits does not alter the height of the first maximum in the P.D.-time curve. The subsequent behavior of the P.D., however, is considerably affected by the pH of the KCl-rich sea water. These changes in the shape of the P.D.-time curve have been interpreted as indicating that potassium enters Valonia protoplasm more rapidly from alkaline than from acidified KCl-rich sea water. This conclusion is discussed in relation to certain theories which have been proposed to explain the accumulation of KCl in Valonia sap. The initial rise in P.D. when a Valonia cell is transferred from natural sea water to KCl-rich sea water has been correlated with the concentrations of KCl in the sea waters. It is assumed that the observed P.D. change represents a diffusion potential in the external surface layer of the protoplasm, where the relative mobilities of ions may be supposed to differ greatly from their values in water. Starting with either Planck''s or Henderson''s formula, an equation has been derived which expresses satisfactorily the observed relationship between P.D. change and concentration of KCl. The constants of this equation are interpreted as the relative mobilities of K+, Na+, and Cl- in the outer surface layer of the protoplasm. The apparent relative mobility of K+ has been calculated by inserting in this equation the values for the relative mobilities of Na+ (0.20) and Cl- (1.00) determined from earlier measurements of concentration effect with natural sea water. The average value for the relative mobility of K+ is found to be about 20. The relative mobility may vary considerably among different individual cells, and sometimes also in the same individual under different conditions. Calculation of the observed P.D. changes as phase-boundary potentials proved unsatisfactory.  相似文献   

14.
中国林蛙幼体适宜生存环境的探讨   总被引:21,自引:3,他引:18  
本文通过人为设置六种不同的环境条件,研究了中国林蛙幼体对不同环境的适应性。结果表明:适宜的生存环境是水深低于蛙全长并设有栖息陆地,或者保持泥水湿润。水深高于蛙体长或环境干匀对蛙不利。在适宜的环境条件下,幼蛙平均能存活达536.6h,最长可达25d。  相似文献   

15.
1. The electrolyte composition, the pH, and freezing points of the fluids of several invertebrates and one primitive chordate are reported. 2. Fluids of the worms, echinoderms, and the clam Venus were isotonic with sea water; fluids of the Arthropoda were hypertonic to sea water. 3. The pH of all fluids was below that of sea water. In the Arthropoda and Myxine less individual variation in pH appeared than in the echinoderms and worms. 4. Ratios of ionic concentrations in the fluid to those in the sea water indicated (1) uniform distribution of ions between the internal and external media for the echinoderms and Venus, (2) differential distribution of potassium and magnesium in the worms; (3) differential distribution of sulfate, magnesium, potassium, and calcium in the Arthropoda; and (4) differential distribution of calcium, magnesium, and sulfate in Myxine. 5. The unequal distribution of ions implies the expenditure of energy against a concentration gradient across the absorbing or excreting membranes, a capacity frequently overlooked in the invertebrates. 6. The sera of the Arthropoda from diluted sea water showed higher concentrations of sodium, potassium, calcium, and chloride ions relative to the respective concentrations in the external medium than in normal sea water, and also showed different orders for those ions. 7. The increase in osmotic pressure of the sera of the animals moving into brackish water is caused by unequal accumulation of sodium, potassium, calcium, and chloride ions. Sulfate and magnesium ionic ratios do not change.  相似文献   

16.
The flagellar root system of Entosiphon sulcatum (Dujardin) Stein (Euglenophyceae) is described and compared with kinetoplastid and other euglenoid systems. An asymmetric pattern of three microtubular roots, one between the two flagellar basal bodies and one on either side (here called the intermediate, dorsal, and ventral roots), is consistent within the euglenoid flagellates studied thus far. The dorsal root is associated with the basal body of the anterior flagellum (F1) and lies on the left dorsal side of the basal body complex. Originating between the two flagellar basal bodies, and associated with the basal body of the trailing flagellum (F2), the intermediate root is morphologically distinguished by fibrils interconnecting the individual microtubules to one another and to the over lying reservoir membrane. The intermediate root is often borne on a ridge projecting into the reservoir. The ventral root originates near the F2 basal body and lies on the right ventral side of the cell. Fibrillar connections link the membrane of F2 with the reservoir membrane at the reservoircanal transition level. A large cross-banded fiber joins the two flagellar basal bodies, and a series of smaller striated fibers links the anterior accessory and flagellar basal bodies. Large nonstriated fibers extend from the basal body complex posteriorly into the cytoplasm.  相似文献   

17.
The water spider Argyroneta aquatica (Clerck) is the only spider that spends its whole life under water. Water spiders keep an air bubble around their body for breathing and build under-water air bells, which they use for shelter and raising offspring, digesting and consuming prey, moulting, depositing eggs and sperm, and copulating. It is unclear whether these bells are an important oxygen reservoir for breathing under water, or whether they serve mainly to create water-free space for feeding and reproduction. In this study, we manipulated the composition of the gas inside the bell of female water spiders to test whether they monitor the quality of this gas, and replenish oxygen if required. We exchanged the entire gas in the bell either with pure O2, pure CO2, or with ambient air as control, and monitored behavioural responses. The test spiders surfaced and replenished air more often in the CO2 treatment than in the O2 treatment, and they increased bell building behaviour. In addition to active oxygen regulation, they monitored and adjusted the bells by adding silk. These results show that water spiders use the air bell as an oxygen reservoir, and that it functions as an external lung, which renders it essential for living under water permanently. A. aquatica is the only animal that collects, transports, and stores air, and monitors its property for breathing, which is an adaptive response of a terrestrial animal to the colonization of an aquatic habitat.  相似文献   

18.
The flagellar root system of Entosiphon sulcatum (Dujardin) Stein (Euglenophyceae) is described and compared with kinetoplastid and other euglenoid systems. An asymmetric pattern of three microtubular roots, one between the two flagellar basal bodies and one on either side (here called the intermediate, dorsal, and ventral roots), is consistent within the euglenoid flagellates studied thus far. The dorsal root is associated with the basal body of the anterior flagellum (F1) and lies on the left dorsal side of the basal body complex. Originating between the two flagellar basal bodies, and associated with the basal body of the trailing flagellum (F2), the intermediate root is morphologically distinguished by fibrils interconnecting the individual microtubules to one another and to the overlying reservoir membrane. The intermediate root is often borne on a ridge projecting into the reservoir. The ventral root originates near the F2 basal body and lies on the right ventral side of the cell. Fibrillar connections link the membrane of F2 with the reservoir membrane at the reservoir-canal transition level. A large cross-banded fiber joins the two flagellar basal bodies, and a series of smaller striated fibers links the anterior accessory and flagellar basal bodies. Large nonstriated fibers extend from the basal body complex posteriorly into the cytoplasm.  相似文献   

19.
1. In three previous publications it had been shown that electrolytes influence the rate of diffusion of pure water through a collodion membrane into a solution in three different ways, which can be understood on the assumption of an electrification of the water or the watery phase at the boundary of the membrane; namely, (a) While the watery phase in contact with collodion is generally positively electrified, it happens that, when the membrane has received a treatment with a protein, the presence of hydrogen ions and of simple cations with a valency of three or above (beyond a certain concentration) causes the watery phase of the double layer at the boundary of membrane and solution to be negatively charged. (b) When pure water is separated from a solution by a collodion membrane, the initial rate of diffusion of water into a solution is accelerated by the ion with the opposite sign of charge and retarded by the ion with the same sign of charge as that of the water, both effects increasing with the valency of the ion and a second constitutional quantity of the ion which is still to be defined. (c) The relative influence of the oppositely charged ions, mentioned in (b), is not the same for all concentrations of electrolytes. For lower concentrations the influence of that ion usually prevails which has the opposite sign of charge from that of the watery phase of the double layer; while in higher concentrations the influence of that ion begins to prevail which has the same sign of charge as that of the watery phase of the double layer. For a number of solutions the turning point lies at a molecular concentration of about M/256 or M/512. In concentrations of M/8 or above the influence of the electrical charges of ions mentioned in (b) or (c) seems to become less noticeable or to disappear entirely. 2. It is shown in this paper that in electrical endosmose through a collodion membrane the influence of electrolytes on the rate of transport of liquids is the same as in free osmosis. Since the influence of electrolytes on the rate of transport in electrical endosmose must be ascribed to their influence on the quantity of electrical charge on the unit area of the membrane, we must conclude that the same explanation holds for the influence of electrolytes on the rate of transport of water into a solution through a collodion membrane in the case of free osmosis. 3. We may, therefore, conclude, that when pure water is separated from a solution of an electrolyte by a collodion membrane, the rate of diffusion of water into the solution by free osmosis is accelerated by the ion with the opposite sign of charge as that of the watery phase of the double layer, because this ion increases the quantity of charge on the unit area on the solution side of the membrane; and that the rate of diffusion of water is retarded by the ion with the same sign of charge as that of the watery phase for the reason that this ion diminishes the charge on the solution side of the membrane. When, therefore, the ions of an electrolyte raise the charge on the unit area of the membrane on the solution side above that on the side of pure water, a flow of the oppositely charged liquid must occur through the interstices of the membrane from the side of the water to the side of the solution (positive osmosis). When, however, the ions of an electrolyte lower the charge on the unit area of the solution side of the membrane below that on the pure water side of the membrane, liquid will diffuse from the solution into the pure water (negative osmosis). 4. We must, furthermore, conclude that in lower concentrations of many electrolytes the density of electrification of the double layer increases with an increase in concentration, while in higher concentrations of the same electrolytes it decreases with an increase in concentration. The turning point lies for a number of electrolytes at a molecular concentration of about M/512 or M/256. This explains why in lower concentrations of electrolytes the rate of diffusion of water through a collodion membrane from pure water into solution rises at first rapidly with an increase in concentration while beyond a certain concentration (which in a number of electrolytes is M/512 or M/256) the rate of diffusion of water diminishes with a further increase in concentration.  相似文献   

20.
1. The respiration of luminous bacteria has been studied by colorimetric and manometric methods. 2. Limulus oxyhaemocyanin has been used as a colorimetric indicator of oxygen consumption and indicator dyes were used for colorimetric determination of carbon dioxide production. 3. The Thunberg-Winterstein microrespirometer has been used for the measurement of the rate of oxygen consumption by luminous bacteria at different partial pressures of oxygen. 4. The effect of oxygen concentration upon oxygen consumption has been followed from equilibrium with air to low pressures of oxygen. 5. Luminous bacteria consume oxygen and produce carbon dioxide independent of oxygen pressures from equilibrium with air (152 mm.) to approximately 22.80 mm. oxygen or 0.03 atmosphere. 6. Dimming of a suspension of luminous bacteria occurs when oxygen tension is lowered to approximately 2 mm. Hg (0.0026 atmosphere) and when the rate of respiration becomes diminished one-half. 7. Pure nitrogen stops respiratory activity and pure oxygen irreversibly inhibits oxygen consumption. 8. The curve for rate of oxygen consumption with oxygen concentration is similar to curves for adsorption of gasses at catalytic surfaces, and agrees with the Langmuir equation for the expression of the amount of gas adsorbed in unimolecular layer at catalytic surfaces with gas pressure. 9. A constant and maximum rate of oxygen consumption occurs in small cells when oxygen concentration becomes sufficient to entirely saturate the surface of the oxidative catalyst of the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号