首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although some excellent articles about Lyell's work have been published, they do not explicitly deal with Lyell's biogeographical conceptions. The purpose of this paper is to analyse Lyell's biogeographical model in terms of its own internal structure. Lyell tried to explain the distribution of organisms by appealing to a real cause (climate). However, he was aware that environmental conditions were clearly insufficient to explain the existence of biogeographical regions. Lyell's adherence to ecological determinism generated strong tensions within his biogeographical model. He shifted from granting a secondary weight to dispersal to assigning it a major role. By doing so, Lyell was led into an evident contradiction. A permanent tension in Lyell's ideas was generated by the prevalent explanatory pattern of his time. The explanatory model based on laws did not produce satisfactory results in biology because it did not deal with historical processes. We may conclude that the knowledge of organic distribution interested Lyell as long as it could be explained by the uniformitarian principles of his geological system. The importance of the second volume of the Principles of geology lies in its ample and systematic argumentation about the geographical distribution of organisms. Lyell established, independently from any theory about organic change, the first version of dispersalist biogeography.  相似文献   

2.
Ranunculus L. represents the largest genus within Ranunculaceae, comprising more than 600 species with a worldwide distribution. However, there are still many gaps in our knowledge of the infrageneric taxonomy and evolution of Ranunculus. In this regard, intraspecific variation of the polyploid complex Ranunculus parnassiifolius remains under discussion. To reconstruct the biogeographical history of the polyploid complex R. parnassiifolius, 20 populations distributed throughout the Cantabrian Mountains, Pyrenees, and Alps were investigated. Phylogenetic studies were based on nuclear internal transcribed spacers (ITS) and plastid (rpl32‐trnL, rps16‐trnQ) sequence data, analysed using Bayesian approaches as well as the evolution of morphological characters. Additionally, biogeographical patterns were conducted using statistical dispersal–vicariance analysis. The analyses presented here support the recognition of two evolutionary independent units: R. cabrerensis sensu lato (s.l.) and R. parnassiifolius s.l. Furthermore gradual speciation depending on the biogeographical territory is proposed, and optimal reconstructions have probably favoured the ancestor of Ranunculus parnassiifolius as originating in the Iberian Peninsula. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 107 , 477–493.  相似文献   

3.
A recent Guest Editorial by Parenti & Ebach (2013, Journal of Biogeography, 40, 813–820) disagrees with the methods or interpretations in two of our recent papers. In addition, the authors open a debate on biogeographical concepts, and present an alternative philosophy for biogeographical research in the context of their recently described biogeographical subregion called ‘Pandora’. We disagree with their approach and conclusions, and comment on several issues related to our differing conceptual approaches for biogeographical research; namely, our use of molecular phylogenetic analyses, including time estimates; and Parenti & Ebach's reliance on taxon/general area cladograms. Finally, we re‐examine their ‘tests’ supporting the existence of ‘Pandora’.  相似文献   

4.
Species distributions and their patterns in geographical space have been studied for several decades and explained by theories such as Janzen's, with respect to the nature of dispersal barriers in the Tropics, and Rapoport's, with respect to range size. However, the roles of specific environmental and geographical factors (e.g. ecological niche breadth, geographical barriers, etc.) in shaping species ranges and distributional patterns remain largely unexplored. The present study analyzed predictions from these two theories via analysis of virtual species with respect to biogeographical patterns: virtual species were created across South America, covering all major environments on the continent, and were used to compare effects of niche breadth, environmental availability, connectivity, seasonality, and the presence of known biogeographical barriers (rivers) in shaping species distributions and biodiversity patterns. Geographical ranges varied from narrow to broad, depending on the location of the seed point when comparing species produced with the same niche breadth. Analysis without consideration of seasonality and barriers produced species with broader distributions in the Tropics and narrower distributions in montane and temperate regions of the continent. When seasonality was included, however, broader ranges were concentrated in temperate regions, thus supporting Janzen's idea. Rapoport's rule of broader geographical ranges at higher latitudes was supported only when seasonality and physical barriers were included but not in species with very narrow or very broad niches, suggesting that this ‘rule’ results from interactions among niche breadth, dispersal capabilities, and dispersal barriers. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 108 , 241–250.  相似文献   

5.
The applicability of Rapoport's rule to the marine molluscs of the Americas   总被引:2,自引:0,他引:2  
Aim We evaluated the applicability of Rapoport's rule (RR) to the marine molluscs of the Americas. The biogeographical pattern predicted by RR has been the subject of a large number of studies, some supporting it and some not. In this exercise, we attempted to generate results free of biases in taxonomy or geographical scale. Location The study area encompassed the Pacific and Atlantic sides of the entire North and South American continents. Methods Our analysis was based on secondary data. We tested the relationship of the geographical range to gradients of latitude and depth, using the methodologies of Stevens (1989) and midpoint ( Rohde et al., 1993 ). By Spearman's correlation, we related the mean amplitude of the geographical distribution to each gradient. We compared all known molluscan species together, and performed a second analysis limited to certain taxonomically well‐known groups. Results Our results were generated from a databank encompassing 4067 species. The analyses corroborated RR on both the Pacific and Atlantic coasts. In applying the pattern to the Atlantic coast, certain methodological issues had to be considered, such as the exclusion of deep‐water species and taxonomically biased groups. Regional features, such as the size of a biogeographical province, seemed to strongly affect the form of the pattern. The results also supported the association of RR with a depth gradient.  相似文献   

6.
Aim To determine biogeographical patterns in five closely related species in the fish genus Hypseleotris, and to investigate the relative roles of drainage divide crossings and movement during lowered sea levels between drainage basins and biogeographical provinces based on the phylogeographical patterns within the group. The high degree of overlap in the distributions and ecology of these species makes them ideal candidates for comparative phylogeographical study. Location Eastern, central and south‐eastern Australia. Methods A total of 179 Hypseleotris individuals were sequenced from 45 localities for the complete mitochondrial cytochrome b gene and the first 30 base pairs of the threonine transfer RNA for a total of 1170 bp. Phylogenetic relationships were hypothesized using parsimony and Bayesian analyses. Results Phylogenetic analysis resolves the five species into three clades. The first corresponds to the species Hypseleotris klunzingeri ( Ogilby, 1898 ); within it two clades are resolved, one consisting of individuals from the Eastern Province (EP), plus two eastern Murray‐Darling Province (MDP) localities, and the other including the remainder of the MDP localities, along with the Lake Eyre Basin (Central Australian Province, CAP) individuals. The other two clades include a mixed Hypseleotris galii ( Ogilby, 1898 )/Hypseleotris sp. 3 Murray‐Darling clade, with EP and MDP lineages mostly segregated and differentiations in populations spread along the EP, and a mixed Hypseleotris sp. 4 Lake's and Hypseleotris sp. 5 Midgley's clade, with two groups of MDP localities and two CAP lineages indicated, interspersed with EP lineages as well as those from the Northern Province. Main conclusions This study is broadly congruent with a previous analysis of Hypseleotris phylogeny, but the previously observed overall relationship of south‐eastern Australian provinces [EP(MDP+CAP)] was not confirmed and is more complicated than hitherto thought. This highlights the necessity of obtaining a sufficient number of sampling localities to identify potential connectivity between populations in order to demonstrate congruent biogeographical patterns. We identified many instances of drainage divide crossings, which were the major means of movement between provinces. Despite the commonness of movement across drainage divides, very few of these were found to be exactly congruent among the species. Most occurred in different places, or if in the same location, apparently at different times, or in at least one case, in opposite directions. Patterns of movement between adjacent coastal drainages were also found to be largely incongruent; when congruence was found the populations involved had quite different genetic divergences.  相似文献   

7.
The range size distributions of 6643 species in ten different fish and invertebrate taxa dwelling in pelagic (latitudinal range sizes) and benthic (latitudinal and depth range sizes) habitats on both sides of the Atlantic Ocean (80°N−70°S) were studied. The objectives were to analyse: (1) the range size distribution patterns for the various taxa and whether they have right/left skewed or lognormal distributions; (2) the geographical species distributions, to ascertain whether the distribution ranges change with latitude (Rapoport's rule); and (3) the relationship between the depth ranges of benthic species and their maximum depth of occurrence and how depth range size distributions change with latitude. The pelagic taxa exhibited larger range sizes than did the benthic taxa, continental slope/rise species excepted. On the other hand, the boundaries between geographical provinces for both benthic taxa and pelagic taxa tended to occur in association with major oceanographic processes. The shape of the latitudinal range frequency distributions (LRFDs) of the pelagic organisms were distinctly left‐skewed, and the LRFDs for most taxa were significantly different from lognormal. There was no common pattern for the distributions of the benthic organisms, which were lognormal in Cephalopoda, Stomatopoda, and Crustacea Decapoda and tended to be left‐skewed and significantly different from lognormal in Pisces. The applicability of Rapoport's rule was not clearly inferable from the results, and the rule appears to be conditioned by the location of biogeographical boundaries and the endemism rate in the different biogeographical provinces. A clear increase in depth range size with maximum depth range was observable for benthic species, confirming previous studies. Species’ depth range distributions displayed a discernible latitudinal pattern, right‐skewed at high latitudes and left‐skewed at low latitudes. The location of biogeographical boundaries, and endemism rate by biogeographical province were considered to be the factors most useful in explaining species’ distribution patterns and their conformity or nonconformity to Rapoport's rule. © 2003 The Linnean Society of London, Biological Journal of the Linnean Society, 2003, 80 , 437–455.  相似文献   

8.
Aim In order to advance our understanding of the assembly of communities on islands and to elucidate the function of different islands in creating regional and subregional distribution patterns, we identify island biogeographical roles on the basis of the distribution of the islands’ biota within the archipelago. We explore which island characteristics determine island biogeographical roles. Furthermore, we identify biogeographical subregions, termed modules. Location Wallacea in Indonesia, and the West Indies in the Caribbean Sea. Methods We use a network approach to detect island biogeographical roles and avian biogeographical modules. To designate the biogeographical role of an island, each island is assigned two coordinates, l and r. The position of an island in lr space characterizes its role, namely as peripheral, connector, module hub, or network hub. Island characteristics are tested as predictors of l and r. Results Both Wallacea and the West Indies were found to be significantly modular and divided into four biogeographical modules. The four modules identified within Wallacea each contain all existing island roles, whereas no module in the West Indies represents all possible roles. Island area and elevation appeared to be the most important determinants of an island’s l score, while measurements of isolation essentially determined the r score. Main conclusions In both Wallacea and the West Indies, the geographic structuring into biogeographical modules corresponds well with our knowledge of past connections and contemporary factors. In both archipelagos, large, mountainous islands are identified as hubs and are thus responsible for faunal coherence within modules (module hubs) and across the entire archipelago (network hubs). We thus interpret these as source islands for the surrounding islands in their module (module hubs) or for the entire archipelago (network hubs). Islands positioned marginally in their module and distant from the mainland are identified as connectors or network hubs, behaving as sinks and stepping stones for dispersing species. Modularity and predictors of biogeographical roles are similar for Wallacea and the West Indies, whereas the build‐up of biogeographical modules and the assortment of roles depend on the spatial constellation of islands in each archipelago.  相似文献   

9.
Aim To test whether marine biogeographical patterns observed at the community level are also important within species. It is postulated that historical hydrogeographic barriers have driven in situ diversification. Location The intertidal and shallow subtidal zones of southern Australia, New Zealand and nearby islands. Australia's temperate marine communities are characterized by a high degree of endemism and show strong biogeographical structure along an east–west axis. Methods Phylogeographical analysis of the widespread asteriid sea‐star Coscinasterias muricata Verrill across southern Australia and New Zealand. Forty‐two samples from 27 locations were included in phylogenetic analyses of mitochondrial (CO1; control region) and nuclear (ITS2) DNA sequences. Results Analysis of mtDNA revealed a deep phylogenetic split within Australian C. muricata, strongly correlated with latitude. ‘Northern’ haplotypes (latitude ≤ 37.6° S, nine sites, 15 samples) were 7.3–9.4% divergent from ‘southern’ haplotypes (latitude ≥ 37.6° S, 19 sites, 27 samples), consistent with late Pliocene separation. Eastern and western representatives of the ‘northern’ clade were 0.5–1.0% divergent, probably reflecting Pleistocene isolation. The ‘southern’ clade of Australia is also represented in New Zealand, indicating Pleistocene oceanic dispersal. Nuclear DNA (ITS2) sequences yielded relatively little phylogenetic resolution, but were generally congruent with mtDNA‐based groupings. Main conclusions The phylogeographical pattern detected within Australian C. muricata closely resembles marine biogeographical groupings proposed on the basis of community and species distributions. Recurring evolutionary patterns may have been driven by the hydrographic history of southern Australia. Specifically, we suggest that Plio‐Pleistocene temperature change and the repeated opening and closure of Bass Strait promoted allopatric divergence and perhaps cryptic speciation in C. muricata.  相似文献   

10.
The distributional patterns of the seven species of Rhizoprionodon were analysed using the panbiogeographical method of track analysis. The individual tracks of Rhizoprionodon suggest that the genus is mainly an Indian–Atlantic Ocean group. Five generalized tracks were found: (1) Caribbean, defined by R. porosus and R. terraenovae; (2) eastern coast of South America, defined by R. porosus and R. lalandei; (3) Indian Ocean, defined by R. acutus and R. oligolinx; (4) north‐western Australia, defined by R. acutus, R. oligolinx and R. taylori; (5) north‐north‐eastern Australia, defined by R. acutus and R. taylori. Only R. longurio was not included in any generalized track, and its distribution is restricted to the eastern Pacific Ocean. Two biogeographical nodes were found at the intersection of the generalized tracks 1 and 2 (Caribbean Sea) and generalized tracks 4 and 5 (north Australia). The generalized tracks overlap with those found in several unrelated marine taxa. Overall, the generalized tracks are associated with warm currents. The biogeographical nodes found (Caribbean and Australian) are coincident with the global distribution of mangroves.  相似文献   

11.
Aim I analysed distributional and phylogenetic information on weevils (Coleoptera: Curculionidae) from the Falklands, and integrated it with molecular, palaeontological and geological information to infer a geobiotic scenario. Location Falkland Islands (Islas Malvinas). Methods The panbiogeographical analysis was based on data on 23 Falkland species and their related taxa from southern South America. For the cladistic biogeographical analysis I analysed six weevil taxa for which phylogenetic hypotheses are available (the generic groups Cylydrorhinus, Strangaliodes and Falklandius, and the genera Antarctobius, Germainiellus and Puranius). Results from this analysis were compared with previous regionalizations. Cenocrons (sets of taxa that share the same biogeographical history) were identified by considering temporal information provided by fossils and molecular clocks. Finally, a geobiotic scenario was proposed by integrating the available information. Results Six generalized tracks were detected: Maule–Valdivian forests, Magellanic forest, Magellanic moorland, Falkland Islands, Magellanic forest–Magellanic moorland, and Magellanic forest–Falkland Islands. A node was identified in the Magellanic forest, based on the overlap of two generalized tracks. A single general area cladogram was obtained, implying the following sequence: (Magellanic moorland (Maule–Valdivian forests (Magellanic forest, Falkland Islands))). The Falklands are classified here as a biogeographical province in the Austral realm, Andean region and Subantarctic subregion. Falkland weevils seem to belong to a single Subantarctic cenocron. The sequence of events deduced implies the following steps: development of the Subantarctic biota in southern South America, arrival of the Falkland crustal block from South Africa in the Early Cretaceous, geodispersal of the Subantarctic cenocron from southern South America to the Falklands during the Early Oligocene, vicariance of the Magellanic moorland, vicariance of the Maule–Valdivian forests, and final vicariance between the Magellanic forest and the Falkland Islands. Main conclusions The biotic components identified support the connection of the Falkland weevils with the Magellanic forest. Falkland weevils belong to a single cenocron, dated to at least the Early Oligocene, when geodispersal from southern South America may have occurred. An older African cenocron may have been replaced completely by the Subantarctic one when the proto‐Falklands made contact with the Patagonian continental shelf. A geobiotic scenario implying vicariance events related to sea‐level variations could explain the distributional patterns analysed herein.  相似文献   

12.
Aim To reconstruct the temporal and biogeographical history of Old World disjunctions in Scabiosa (Dipsacaceae) and the timing of diversification in the Mediterranean Basin, in order to evaluate the importance of biogeographical and climatological history (particularly the onset of a mediterranean climate) in shaping Scabiosa distributions. Location Europe and the Mediterranean Basin, southern Africa and eastern Asia. Methods This study uses maximum‐likelihood and Bayesian phylogenetic analyses of chloroplast DNA (atpB–rbcL, trnL–trnF, trnS–trnG, psbA–trnH) and nuclear ribosomal DNA [internal transcribed spacer (ITS) and external transcribed spacer (ETS)] from 24 out of c. 37 ingroup taxa, beast molecular dating, and the dispersal–extinction–cladogenesis method (Lagrange ) to reconstruct ancestral geographical ranges and the timing of diversification of the major clades of Scabiosa. Results Biogeographical and divergence time reconstructions showed that Scabiosa originated during the Miocene and diversified in Europe, followed by independent movements into Asia and Africa. Several of the major clades were inferred to have radiated sometime between the late Miocene and early Pleistocene, a timeframe that encompasses the onset of the mediterranean climate in Europe. More recent middle–late Pleistocene radiations in the Mediterranean Basin and southern Africa have played a large role in Scabiosa diversification. Main conclusions Members of Scabiosa appear to have capitalized on adaptations to montane and/or dry conditions in order to colonize similar habitats in different biogeographical regions. The formation of the East African Rift mountains is potentially of great importance in explaining the southward migration of Scabiosa. The initial diversification of Scabiosa in Europe during the Miocene is not consistent with the initiation of the mediterranean climate, but may instead be associated with increased aridity and the retreat of subtropical lineages during this time. However, the radiation of some of the major subclades within Scabiosa may have been associated with an emerging mediterranean climate. More recent and rapid radiations in both the Mediterranean Basin and southern Africa highlight the probable importance of Pleistocene climate fluctuations in Scabiosa diversification.  相似文献   

13.
The montane forests of northern Mozambique’s isolated massifs are inhabited by numerous range-restricted and threatened bird species, but until recently were extremely little-known. We report on a first avifaunal survey of the isolated montane habitats of Mt Mecula (1 442 m), Niassa National Reserve, notable as the only currently protected montane area in northern Mozambique. Mount Mecula’s moist forest is small (approximately 136 ha in total) and patchy, and although known botanically to have some montane affinities, was found to support an avifauna more typical of riparian forests of medium to low altitude. The only montane forest species recorded was Lemon Dove Aplopelia larvata. Other montane elements included Vincent’s Bunting Emberiza (capensis) vincenti, one of six species recorded new to the Niassa National Reserve list. Overall, it appears that despite its intermediate location, Mt Mecula does not represent a biogeographical ‘stepping stone’ for montane forest bird species. This probably owes to its remoteness from the Eastern Arc Mountains of Tanzania to the north and the massifs of other parts of northern Mozambique, to the south and west.  相似文献   

14.
15.
Prioritization of taxa for conservation must rest on a foundation of correctly identified species boundaries, enhanced by an understanding of evolutionary history and phylogenetic relationships. Therefore, we can incorporate both evolutionary and ecological processes into efforts to sustain biodiversity. In this issue of Molecular Ecology, Malaney & Cook ( 2013 ) highlight the critical value of an evolutionary biogeographical approach, combining multilocus phylogeography with climatic niche modelling to infer phylogenetically weighted conservation priorities for evolutionary lineages of jumping mice across North America. Remarkably, they find that the Preble's meadow jumping mouse (Zapus hudsonius preblei), long debated as a threatened taxon, in fact represents the southern terminus of a relatively uniform lineage that expanded well into Alaska during the Holocene. By contrast, some other relictual and phylogenetically divergent taxa of jumping mice likely warrant greater conservation priority. This study highlights the value of integrative approaches that place current taxonomy in a broader evolutionary context to identify taxa for conservation assessment, but also highlights the challenges in maintaining potential for adaptive responses to environmental change.  相似文献   

16.
Paul Ozenda 《Plant biosystems》2013,147(6):759-780
Abstract

The South-European nemoral region. - The objective of this paper is to present a checklist and a biogeographical arrangement of the main vegetation types on the whole submediterranean zone (and supramediterranean belt in the mountains) of the European southern nemoral region. This revision has been made possible by the recent publication of a number of synthetic vegetation maps. It is suggested that this cartographic information may facilitate the design of an ecological study of this zone, particularly of its parameters.  相似文献   

17.
Insects that inhabit high-altitude ecosystems are an ecologically specialized group whose distribution is restricted by the presence of biogeographical barriers. These biogeographical constraints are thought to mould the shape of some insect structures because of environmental pressures that may produce better adaptations in extreme environments. We evaluated the potential distribution of Homocopris achamas and Uroxys coarctatus in two life regions (the Andean region and the Páramo region) found in the Andes of Colombia, and we determined if there were differences in their morphology along an elevational gradient. To determine the potential distribution of the species, we obtained geographical data through the systematic search of databases and entomological collections that we modelled under the maximum entropy model. We then evaluated the morphological variations by measuring geometric structures such as the clypeus (MC), the eye (ME) and the area of the anterior tibia (TA). We found that both species along the entire gradient exhibited the following characteristics: H. achamas was dominant in the Páramo region and showed two population nuclei separated by a wide biogeographic barrier, while U. coarctatus was more dominant in the Andean region and was distributed only in the northern Andes. Both were always linked to ecosystems with open vegetation that was both natural or intervened. H. achamas did not show changes in the shape of the structures while U. coarctatus showed differences in MC and ME. We suggested that livestock activity could act as an engine for breaking down biogeographical barriers allowing the distribution of a species to expand, and with this distributional expansion changes in the morphological structures of some species linked to their phenotypic plasticity could be promoted.  相似文献   

18.
Two species of the snakefly genus Mongoloraphidia Aspöck & Aspöck, 1968 from Japan and Taiwan are described as new to science: Mongoloraphidia (Japanoraphidia) occidentalis sp. nov. and Mongoloraphidia (Formosoraphidia) curvata sp. nov. A key to the species of Mongoloraphidia from Eastern Asia is provided. Phylogenetic and biogeographical aspects on the Raphidiidae from Eastern Asia are discussed.  相似文献   

19.
We analyzed the geographical and elevational distributions of two Polypodium complexes from Mexico and Central America. Distribution data of nine species of the Polypodium colpodes complex and the Polypodium plesiosorum complex were obtained from almost 1500 herbarium specimens, field collections in Mexico and Costa Rica, and literature studies. The presence of each species was recorded for each Mesoamerican country, in 1° × 1° grid‐cells and biogeographical provinces. The rarity of species was also evaluated. Although the two complexes show extensive overlap, the P. colpodes complex is distributed mainly along the Pacific versant of Mexico and Central America, whereas the P. plesiosorum complex occurs mainly along the Atlantic versant. Those biogeographical provinces with maximum species diversity are Chiapas (seven species), Sierra Madre del Sur (six species), and the Trans‐Mexican Volcanic belt (six species). Grid‐cells with more species are located mainly in the mountains of central‐southern Mexico and northern Central America. Richness does not decrease or increase with latitude. Elevation distributions showed that most Polypodium species are concentrated in the montane interval and three species groups were recognized based on elevational preferences. Polypodium colpodes and P. plesiosorum are the most widely distributed species, whereas Polypodium castaneum and Polypodium flagellare are the only two species that possess the three attributes of rarity (narrow geographical distribution, high habitat specificity, and scarce local populations). Polypodium species of both complexes are present mainly in the montane regions of the study area and show some degree of geographical sympatry, especially in southern Mexico and northern Central America. This overlapping is explained by the elevation tolerance within montane systems and because most species inhabit three or more vegetation types. The distributional patterns of these complexes coincided with the three regional highlands of Mesoamerica, which are separated from each other by the Isthmus of Tehuantepec and by the lowlands of Nicaragua. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ?? , ??–??.  相似文献   

20.
The genus Apsilochorema Ulmer, 1907 is unique in the family Hydrobiosidae Ulmer, being widely distributed in the Palaearctic, Oriental and Australian Regions. All other 49 genera in the family, except the New World Atopsyche Banks, 1905, are confined to a single biogeographical Region. This unique distribution has independently stimulated researchers to formulate competing hypotheses about the biogeographical history of the genus. Molecular sequence data from mitochondrial cytochrome oxidase I (COI) and nuclear cadherin (CAD) genes of Apsilochorema species from the Oriental and Australian areas were analysed phylogenetically. The results retain a monophyletic Apsilochorema, which forms the sistergroup to the other genera in the subfamily Apsilochorematinae. The results from the biogeographical analyses dispute the earlier assumptions of an Oriental or northern Gondwana origin for the genus, revealing unambiguously an initial Australian radiation of the ancestral Apsilochorema with a subsequent dispersal into the Oriental Region. All but one of the Apsilochorema species occurring on the Pacific islands had an Oriental ancestor. The exception is the sistergroup to the New Caledonian species, which is found in both Australia and Oriental Regions. The molecular dating analysis, using a relaxed clock model, indicates that the genus Apsilochorema is about 36.4 MY old and that it dispersed from Australia into the Oriental Region about 28.3 Ma. It also gives an estimate of the approximate ages of the dispersals into New Caledonia to about 15.3 Ma; to the Solomon Islands at about 16.2 Ma; to the Fiji Islands at about 16.1 Ma; and to the Vanuatu Islands at about 5.4 Ma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号