首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alterations in the intestinal microbiota have been suggested as an etiological factor in the pathogenesis of irritable bowel syndrome (IBS). This study used a molecular fingerprinting technique to compare the composition and biodiversity of the microbiota within fecal and mucosal niches between patients with diarrhea-predominant IBS (D-IBS) and healthy controls. Terminal-restriction fragment (T-RF) length polymorphism (T-RFLP) fingerprinting of the bacterial 16S rRNA gene was used to perform microbial community composition analyses on fecal and mucosal samples from patients with D-IBS (n = 16) and healthy controls (n = 21). Molecular fingerprinting of the microbiota from fecal and colonic mucosal samples revealed differences in the contribution of T-RFs to the microbiota between D-IBS patients and healthy controls. Further analysis revealed a significantly lower (1.2-fold) biodiversity of microbes within fecal samples from D-IBS patients than healthy controls (P = 0.008). No difference in biodiversity in mucosal samples was detected between D-IBS patients and healthy controls. Multivariate analysis of T-RFLP profiles demonstrated distinct microbial communities between luminal and mucosal niches in all samples. Our findings of compositional differences in the luminal- and mucosal-associated microbiota between D-IBS patients and healthy controls and diminished microbial biodiversity in D-IBS fecal samples further support the hypothesis that alterations in the intestinal microbiota may have an etiological role in the pathogenesis of D-IBS and suggest that luminal and mucosal niches need to be investigated.  相似文献   

2.
Proton pump inhibitors(PPIs) are commonly used to lessen symptoms in patients with gastroesophageal reflux disease(GERD). However, the effects of PPI therapy on the gastrointestinal microbiota in GERD patients remain unclear. We examined the association between the PPI usage and the microbiota present in gastric mucosal and fecal samples from GERD patients and healthy controls(HCs) using 16 S rRNA gene sequencing. GERD patients taking PPIs were further divided into short-term and long-term PPI user groups. We showed that PPI administration lowered the relative bacterial diversity of the gastric microbiota in GERD patients. Compared to the non-PPIuser and HC groups, higher abundances of Planococcaceae, Oxalobacteraceae, and Sphingomonadaceae were found in the gastric microbiota from the PPI-user group. In addition, the Methylophilus genus was more highly abundant in the long-term PPI user group than in the short-term PPI-user group. Despite the absence of differences in alpha diversity, there were significant differences in the fecal bacterial composition of between GERD patients taking PPIs and those not taking PPIs. There was a higher abundance of Streptococcaceae, Veillonellaceae, Acidaminococcaceae,Micrococcaceae, and Flavobacteriaceae present in the fecal microbiota from the PPI-user group than those from the non-PPI-user and HC groups. Additionally, a significantly higher abundance of Ruminococcus was found in GERD patients on long-term PPI medication than that on shortterm PPI medication. Our study indicates that PPI administration in patients with GERD has a significant effect on the abundance and structure of the gastric mucosal microbiota but only on the composition of the fecal microbiota.  相似文献   

3.
The handling and treatment of biological samples is critical when characterizing the composition of the intestinal microbiota between different ecological niches or diseases. Specifically, exposure of fecal samples to room temperature or long term storage in deep freezing conditions may alter the composition of the microbiota. Thus, we stored fecal samples at room temperature and monitored the stability of the microbiota over twenty four hours. We also investigated the stability of the microbiota in fecal samples during a six month storage period at −80°C. As the stability of the fecal microbiota may be affected by intestinal disease, we analyzed two healthy controls and two patients with irritable bowel syndrome (IBS). We used high-throughput pyrosequencing of the 16S rRNA gene to characterize the microbiota in fecal samples stored at room temperature or −80°C at six and seven time points, respectively. The composition of microbial communities in IBS patients and healthy controls were determined and compared using the Quantitative Insights Into Microbial Ecology (QIIME) pipeline. The composition of the microbiota in fecal samples stored for different lengths of time at room temperature or −80°C clustered strongly based on the host each sample originated from. Our data demonstrates that fecal samples exposed to room or deep freezing temperatures for up to twenty four hours and six months, respectively, exhibit a microbial composition and diversity that shares more identity with its host of origin than any other sample.  相似文献   

4.
The human gut microbiota is a complex system that is essential to the health of the host. Increasing evidence suggests that the gut microbiota may play an important role in the pathogenesis of colorectal cancer (CRC). In this study, we used pyrosequencing of the 16S rRNA gene V3 region to characterize the fecal microbiota of 19 patients with CRC and 20 healthy control subjects. The results revealed striking differences in fecal microbial population patterns between these two groups. Partial least-squares discriminant analysis showed that 17 phylotypes closely related to Bacteroides were enriched in the gut microbiota of CRC patients, whereas nine operational taxonomic units, represented by the butyrate-producing genera Faecalibacterium and Roseburia, were significantly less abundant. A positive correlation was observed between the abundance of Bacteroides species and CRC disease status (R?=?0.462, P?=?0.046?<?0.5). In addition, 16 genera were significantly more abundant in CRC samples than in controls, including potentially pathogenic Fusobacterium and Campylobacter species at genus level. The dysbiosis of fecal microbiota, characterized by the enrichment of potential pathogens and the decrease in butyrate-producing members, may therefore represent a specific microbial signature of CRC. A greater understanding of the dynamics of the fecal microbiota may assist in the development of novel fecal microbiome-related diagnostic tools for CRC.  相似文献   

5.
The pathogenesis of psoriasis, an immune-mediated chronic inflammatory skin disease, remains unclear. Studies have shown an association between psoriasis and intestinal inflammation; in this context, the influence of the gut microbiota on the immune response of psoriasis has become a focus of recent research. The present research evaluated the composition and diversity of the gut microbiota of 21 participants with psoriasis from a Brazilian referral dermatology service compared to 24 healthy controls. A stool sample was collected from each participant at the time of inclusion in the study, and the samples were analysed by sequencing the 16S rRNA gene. The recruitment of research participants involved matching between groups by sex, age, body mass index, comorbidities and smoking and the exclusion of several criteria that could potentially influence the gut microbiota and the interpretation of the data. There was an increase in the Dialister genus and Prevotella copri species in patients with psoriasis compared to the control group. A reduction in the Ruminococcus, Lachnospira and Blautia genera, as well as in the Akkermansia muciniphila species, was also verified in the psoriasis group compared to the control group. Furthermore, patients with psoriasis exhibited less gut microbiota diversity than controls.  相似文献   

6.
This study was designed to investigate the gut microbiota of patients with non-alcoholic fatty liver disease. The inclusive and exclusive criteria for NAFLD patients and healthy subjects were formulated, and detailed clinical data were collected. The genomic DNA of stool samples were extracted for 16S rDNA sequencing, and the amplified V4-region was sequenced on the Illumina Miseq platform. Metastats analysis was performed to identify the differential taxa between the groups. Redundancy analysis was used to evaluate the association between gut microbial structure and clinical variables. Thirty NAFLD patients and 37 healthy controls were involved. The 16S rDNA sequencing showed that there was a dramatic variability of the fecal microbiota among all the individuals. Metastats analysis identified eight families and 12 genera with significant differences between the two groups. When some clinical parameters, such as waist-to-hip ratio (WHR) and homeostasis model assessment of insulin resistance (HOMA-IR), were enrolled in Redundancy analysis, the distribution of the two group of samples was obviously changed. The compositional shifts in fecal bacterial communities of NAFLD patients from the healthy controls were mainly at family or genus levels. According to our Redundancy analysis, insulin resistance and obesity might be closely related to both NAFLD phenotype and intestinal microecology.  相似文献   

7.
BackgroundThere is an abundant link between the gut microbiota and human health and it plays a critical role in the clinic. It is recognized that microbial dysregulation contributes to the pathogenesis of tuberculosis (TB) but the underlying mechanisms remain unclear. In this study, we investigated the association of gut microbiome composition with TB as well as its possible roles in the development of this disease.MethodsFecal samples were collected from 10 TB patients and 20 healthy control samples. DNA extracted from fecal samples was subjected to 16S rDNA gene sequencing analysis on the Illumina MiSeq platform.ResultsCompared with healthy control samples, the gut microbiome of patients with TB was characterized by the decreased Alpha diversity. Perhaps, the decrease of microbial diversity which results in microbial dysregulation is the reason for clinical patients with more symptoms. The PTB group showed the most unique microbiota by higher abundance of Bifidobacteriaceae, Bifidobacteriales, Coriobacteriaceae, Coriobacteriales, Actinobacteria, Caulobacteraceae, Phyllobacteriaceae, Rhizobiales, Burkholderiaceae, Burkholderiaceae. Inflammatory status in PTB patients may be associated with the increased abundance of Clostridia and decreased abundance of Prevotella. We found that the abundance of Solobacterium and Actinobacteria was higher in the patients. There were 4 significant differences (p < 0.05) in the two groups which belonged to four metabolic categories, including endocytosis, phosphotransferase system (PTS), toluene degradation, and amoebiasis.ConclusionWe applied the approach of metagenomic sequencing to characterize the features of gut microbiota in PTB patients. The present study provided a detailed analysis of the characterization of the gut microbiota in patients based on the clinic. According to the metagenome analysis, our results indicated that the gut microbiota in PTB patients was significantly different from healthy control samples as characterized by the bacteria and metabolic pathway. The richness of the gut microbiota in patients was revealed. It was hypothesized that the above-mentioned changes of the gut microbiota could exert an impact on the development of PTB through the downstream regulation of the immune status of the host by way of the gut–lung axis.  相似文献   

8.
《遗传学报》2021,48(9):781-791
Gut dysbiosis is suggested to play a critical role in the pathogenesis of gout. The aim of our study was to identify the characteristic dysbiosis of the gut microbiota in gout patients and the impact of a commonly used uric acid-lowering treatment, febuxostat on gut microbiota in gout. 16S ribosomal RNA sequencing and metagenomic shotgun sequencing was performed on fecal DNA isolated from 38 untreated gout patients, 38 gout patients treated with febuxostat, and 26 healthy controls. A restriction of gut microbiota biodiversity was detected in the untreated gout patients, and the alteration was partly restored by febuxostat. Biochemical metabolic indexes involved in liver and kidney metabolism were significantly associated with the gut microbiota composition in gout patients. Functional analysis revealed that the gut microbiome of gout patients had an enriched function on carbohydrate metabolism but a lower potential for purine metabolism, which was comparatively enhanced in the febuxostat treated gout patients. A classification microbial model obtained a high mean area under the curve up to 0.973. Therefore, gut dysbiosis characterizings gout could potentially serve as a noninvasive diagnostic tool for gout and may be a promising target of future preventive interventions.  相似文献   

9.
Comparative analysis of human gut microbiota by barcoded pyrosequencing   总被引:4,自引:0,他引:4  
Humans host complex microbial communities believed to contribute to health maintenance and, when in imbalance, to the development of diseases. Determining the microbial composition in patients and healthy controls may thus provide novel therapeutic targets. For this purpose, high-throughput, cost-effective methods for microbiota characterization are needed. We have employed 454-pyrosequencing of a hyper-variable region of the 16S rRNA gene in combination with sample-specific barcode sequences which enables parallel in-depth analysis of hundreds of samples with limited sample processing. In silico modeling demonstrated that the method correctly describes microbial communities down to phylotypes below the genus level. Here we applied the technique to analyze microbial communities in throat, stomach and fecal samples. Our results demonstrate the applicability of barcoded pyrosequencing as a high-throughput method for comparative microbial ecology.  相似文献   

10.
目的 探索银屑病患者咽颊部口腔微生物的组成变化与银屑病的发病以及疾病进展的关系,为银屑病的个性化诊疗提供新的思路。方法 采集临床上经过严格筛选的15例银屑病患者(试验组)和15例健康人(对照组)的咽颊部黏膜样本,提取细菌基因组DNA,进行PCR扩增,将扩增后的DNA样本进行16S rRNA高通量测序法分析(Illumina测序)。测序结果与Greengenes Database进行比对,通过生物信息学、医学统计学分析银屑病患者咽颊部口腔微生物结构组成与正常人的差异。结果 在菌群门的水平上,试验组中厚壁菌门在数量上占有绝对优势,其余拟杆菌门、变形菌门、放线菌门、梭杆菌门也依次占有一定比例;对照组中厚壁菌门在数量上同样占有绝对优势,拟杆菌门、变形菌门等也占有不小的比例。虽然在相对丰度上银屑病患者与健康对照组有区别,但差异无统计学意义。在菌群属的水平上,试验组患者中颗粒链球菌与梭杆菌占有明显的相对丰度,对照组则以颗粒链球菌、巨型球菌、Bulleidia、Parvimonas、梭杆菌为主。两组菌群在构成上已经表现出明显的区别。另外,在银屑病患者的咽颊部菌群中颗粒链球菌、梭杆菌和Bulleidia的相对丰度有所升高,而Oribacterium与产线菌(Filifactor)则明显降低,与健康人群相比差异有统计学意义(t=2.5010,P<0.05;t=2.0875,P<0.05)。结论 银屑病患者与健康正常人咽颊部微生物组成结构在属水平上存在明显的差异。咽颊部微生物在银屑病的发病以及疾病进展中的作用值得深入研究。  相似文献   

11.
Accumulated evidence suggests a relationship between specific allergic processes, such as atopic eczema in children, and an aberrant fecal microbiota. However, little is known about the complete microbiota profile of adult individuals suffering from asthma. We determined the fecal microbiota in 21 adult patients suffering allergic asthma (age 39.43 ± 10.98 years old) and compare it with the fecal microbiota of 22 healthy controls (age 39.29 ± 9.21 years old) using culture independent techniques. An Ion-Torrent 16S rRNA gene-based amplification and sequencing protocol was used to determine the fecal microbiota profile of the individuals. Sequence microbiota analysis showed that the microbial alpha-diversity was not significantly different between healthy and allergic individuals and no clear clustering of the samples was obtained using an unsupervised principal component analysis. However, the analysis of specific bacterial groups allowed us to detect significantly lower levels of bifidobacteria in patients with long-term asthma. Also, in allergic individuals the Bifidobacterium adolescentis species prevailed within the bifidobacterial population. The reduction in the levels on bifidobacteria in patients with long-term asthma suggests a new target in allergy research and opens possibilities for the therapeutic modulation of the gut microbiota in this group of patients.  相似文献   

12.
目的 探索过敏性鼻炎患者鼻前庭微生物组成与过敏性鼻炎的关系,为过敏性鼻炎的诊疗提供新思路。方法 提取细菌基因组DNA,通过16S rRNA高通量测序法分析(Illumina测序),将测序结果与greengenes database进行比对,通过生物信息学、医学统计学分析过敏性鼻炎患者鼻前庭微生物组成与正常人的差异。结果 在门水平的相对丰度上,试验组与对照组放线菌和梭杆菌差异显著。在菌群属的研究水平上,试验组与对照组之间有明显差异的菌属有13种,包括黄单胞菌科中的一个未注释的菌属、棒状杆菌属、嗜胨菌属、厌氧球菌属、大芬戈尔德菌属、丙酸杆菌属、短杆菌属、希瓦菌属、微小单胞菌属、考克菌属、鞘脂单胞菌科中的一个未注释的菌属、嗜盐单胞菌属和叶瘤菌属。结论 过敏性鼻炎患者与健康正常人鼻前庭微生物组成存在明显的差异,进一步可深入研究鼻腔内微生物组成影响鼻炎发病的机制。  相似文献   

13.
The aim of this study was to compare the structure of gut microbiota in Parkinson's disease(PD) patients and healthy controls;and to explore correlations between gut microbiota and PD clinical features. We analyzed fecal bacterial composition of 24 PD patients and 14 healthy volunteers by using 16 S rRNA sequencing. There were significant differences between PD and healthy controls, as well as among different PD stages. The putative cellulose degrading bacteria from the genera Blautia(P=0.018),Faecalibacterium(P=0.048) and Ruminococcus(P=0.019) were significantly decreased in PD compared to healthy controls.The putative pathobionts from the genera Escherichia-Shigella(P=0.038), Streptococcus(P=0.01), Proteus(P=0.022), and Enterococcus(P=0.006) were significantly increased in PD subjects. Correlation analysis indicated that disease severity and PD duration negatively correlated with the putative cellulose degraders, and positively correlated with the putative pathobionts. The results suggest that structural changes of gut microbiota in PD are characterized by the decreases of putative cellulose degraders and the increases of putative pathobionts, which may potentially reduce the production of short chain fatty acids, and produce more endotoxins and neurotoxins; and these changes is potentially associated with the development of PD pathology.  相似文献   

14.
A T4‐like coliphage cocktail was given with different oral doses to healthy Bangladeshi children in a placebo‐controlled randomized phase I safety trial. Fecal phage detection was oral dose dependent suggesting passive gut transit of coliphages through the gut. No adverse effects of phage application were seen clinically and by clinical chemistry. Similar results were obtained for a commercial phage preparation (Coliproteus from Microgen/Russia). By 16S rRNA gene sequencing, only a low degree of fecal microbiota conservation was seen in healthy children from Bangladesh who were sampled over a time interval of 7 days suggesting a substantial temporal fluctuation of the fecal microbiota composition. Microbiota variability was not associated with the age of the children or the presence of phage in the stool. Stool microbiota composition of Bangladeshi children resembled that found in children of other regions of the world. Marked variability in fecal microbiota composition was also seen in 71 pediatric diarrhea patients receiving only oral rehydration therapy and in 38 patients receiving coliphage preparations or placebo when sampled 1.2 or 4 days apart respectively. Temporal stability of the gut microbiota should be assessed in case‐control studies involving children before associating fecal microbiota composition with health or disease phenotypes.  相似文献   

15.
Kashin-Beck disease (KBD) is a severe osteochondral disorder that may be driven by the interaction between genetic and environmental factors. We aimed to improve our understanding of the gut microbiota structure in KBD patients of different grades and the relationship between the gut microbiota and serum metabolites. Fecal and serum samples collected from KBD patients and normal controls (NCs) were used to characterize the gut microbiota using 16S rDNA gene and metabolomic sequencing via liquid chromatography-mass spectrometry (LC/MS). To identify whether gut microbial changes at the species level are associated with the genes or functions of the gut bacteria in the KBD patients, metagenomic sequencing of fecal samples from grade I KBD, grade II KBD and NC subjects was performed. The KBD group was characterized by elevated levels of Fusobacteria and Bacteroidetes. A total of 56 genera were identified to be significantly differentially abundant between the two groups. The genera Alloprevotella, Robinsoniella, Megamonas, and Escherichia_Shigella were more abundant in the KBD group. Consistent with the 16S rDNA analysis at the genus level, most of the differentially abundant species in KBD subjects belonged to the genus Prevotella according to metagenomic sequencing. Serum metabolomic analysis identified some differentially abundant metabolites among the grade I and II KBD and NC groups that were involved in lipid metabolism metabolic networks, such as that for unsaturated fatty acids and glycerophospholipids. Furthermore, we found that these differences in metabolite levels were associated with altered abundances of specific species. Our study provides a comprehensive landscape of the gut microbiota and metabolites in KBD patients and provides substantial evidence of a novel interplay between the gut microbiome and metabolome in KBD pathogenesis.Subject terms: Metagenomics, Metabolomics  相似文献   

16.
目的 探讨强直性脊柱炎患者的咽部菌群变化。方法 筛选入组7例强直性脊柱炎患者和7例健康者咽拭子样本,提取咽部DNA,扩增16S rRNA基因,在Illumina平台测序,对测序结果进行生物信息学分析。结果 从ACE指数、Chao1指数、Shannon指数和Simpson指数综合来看强直性脊柱炎患者的咽部菌群Alpha多样性差异不大。Beta多样性分析显示两组研究对象咽部菌群样本可被区分。强直性脊柱炎患者咽部菌群组成和含量发生显著改变,主要变化包括:拟杆菌门(Bacteroidetes)和放线菌门(Actinobacteria)显著降低。拟杆菌门中普雷沃杆菌属(Prevotella)相关的纲目科属水平都显著降低。放线菌门变化落实到属水平,放线菌属(Actinomyces)显著降低,丙酸杆菌属(Propionibacterium)和棒状杆菌属(Corynebacterium)显著增高。厚壁菌门(Firmicutes)中,芽胞杆菌纲(Bacilli)所属的与链球菌属(Streptococcus)相关的纲目科属水平显著增加,而梭状芽胞杆菌纲(Clostridia)包含的韦荣球菌属(Veillonella)、消化球菌属(Peptococcus)显著下降。此外,变形菌门中出现弧菌属(Vibrio)的增加和弯曲菌属(Campylobacter)的降低等变化。结论 强直性脊柱炎患者(本次研究样本)的咽部菌群出现紊乱,以普雷沃杆菌属、放线菌属、韦荣球菌属、消化球菌属和弯曲菌属等显著降低,丙酸杆菌属、棒状杆菌属、链球菌属和弧菌属等显著增加为主要特征。  相似文献   

17.
目的

探索慢性胃炎(CG)患者肠道菌群变化特点。

方法

采集我院青年CG患者(CG组)和健康人群(NC组)的粪便样品,对其细菌16S rDNA V3—V4区域进行扩增并进行高通量测序,然后运用多种生物信息学手段进行分析。

结果

CG组与NC组对象肠道菌群在门和科水平上均有不同之处,其中CG组对象有较高丰度的Actinobacteriota和较低丰度的Ruminococcaceae。CG组对象肠道菌群多样性及均一度均显著低于NC组(均P<0.05),但两者具有相似的丰富度水平。多元方差分析和相似性百分比分析均发现CG组和NC组对象肠道菌群有较大差异。BifidobacteriumBlautiaCollinsellaRuminococcus_torques_group和Streptococcus与CG患者密切相关。

结论

CG患者的肠道菌群存在较大变化,其中BifidobacteriumBlautia等细菌与CG的发生相关。

  相似文献   

18.
Li  Guiding  Jiang  Yi  Li  Qinyuan  An  Defeng  Bao  Mingwei  Lang  Lei  Han  Li  Huang  Xueshi  Jiang  Chenglin 《Antonie van Leeuwenhoek》2022,115(9):1187-1202

Asian elephant is large herbivorous animal with elongated hindgut. To explore fecal microbial community composition with various ages, sex and diets, and their role in plant biomass degrading and nutrition conversation. We generated 119 Gb by metagenome sequencing from 10 different individual feces and identified 5.3 million non-redundant genes. The comprehensive analysis established that the Bacteroidetes, Firmicutes and Proteobacteria constituted the most dominant phyla in overall fecal samples. In different individuals, the alpha diversity of the fecal microbiota in female was lower than male, and the alpha diversity of the fecal microbiota in older was higher than younger, and the fecal microbial diversity was the most complex in wild elephant. But the predominant population compositions were similar to each other. Moreover, the newborn infant elephant feces assembled and maintained a diverse but host-specific fecal microbial population. The discovery speculated that Asian elephant maybe have start to building microbial populations before birth. Meanwhile, these results illustrated that host phylogeny, diets, ages and sex are significant factors for fecal microbial community composition. Therefore, we put forward the process of Asian elephant fecal microbial community composition that the dominant populations were built first under the guidance of phylogeny, and then shaped gradually a unique and flexible gut microbial community structure under the influences of diet, age and sex. This study found also that the Bacteroidetes were presumably the main drivers of plant fiber-degradation. A large of secondary metabolite biosynthetic gene clusters, and genes related to enediyne biosynthesis were found and showed that the Asian elephant fecal microbiome harbored a diverse and abundant genetic resource. A picture of antibiotic resistance genes (ARGs) reservoirs of fecal microbiota in Asian elephants was provided. Surprisingly, there was such wide range of ARGs in newborn infant elephant. Further strengthening our speculation that the fetus of Asian elephant has colonized prototypical fecal microbiota before birth. However, it is necessary to point out that the data give a first inside into the gut microbiota of Asian elephants but too few individuals were studied to draw general conclusions for differences among wild and captured elephants, female and male or different ages. Further studies are required. Additionally, the cultured actinomycetes from Asian elephant feces also were investigated, which the feces of Asian elephants could be an important source of actinomycetes.

  相似文献   

19.
Chen W  Liu F  Ling Z  Tong X  Xiang C 《PloS one》2012,7(6):e39743
Recent reports have suggested the involvement of gut microbiota in the progression of colorectal cancer (CRC). We utilized pyrosequencing based analysis of 16S rRNA genes to determine the overall structure of microbiota in patients with colorectal cancer and healthy controls; we investigated microbiota of the intestinal lumen, the cancerous tissue and matched noncancerous normal tissue. Moreover, we investigated the mucosa-adherent microbial composition using rectal swab samples because the structure of the tissue-adherent bacterial community is potentially altered following bowel cleansing. Our findings indicated that the microbial structure of the intestinal lumen and cancerous tissue differed significantly. Phylotypes that enhance energy harvest from diets or perform metabolic exchange with the host were more abundant in the lumen. There were more abundant Firmicutes and less abundant Bacteroidetes and Proteobacteria in lumen. The overall microbial structures of cancerous tissue and noncancerous tissue were similar; however the tumor microbiota exhibited lower diversity. The structures of the intestinal lumen microbiota and mucosa-adherent microbiota were different in CRC patients compared to matched microbiota in healthy individuals. Lactobacillales was enriched in cancerous tissue, whereas Faecalibacterium was reduced. In the mucosa-adherent microbiota, Bifidobacterium, Faecalibacterium, and Blautia were reduced in CRC patients, whereas Fusobacterium, Porphyromonas, Peptostreptococcus, and Mogibacterium were enriched. In the lumen, predominant phylotypes related to metabolic disorders or metabolic exchange with the host, Erysipelotrichaceae, Prevotellaceae, and Coriobacteriaceae were increased in cancer patients. Coupled with previous reports, these results suggest that the intestinal microbiota is associated with CRC risk and that intestinal lumen microflora potentially influence CRC risk via cometabolism or metabolic exchange with the host. However, mucosa-associated microbiota potentially affects CRC risk primarily through direct interaction with the host.  相似文献   

20.
肠道微生物能够调节动物机体的物质与能量代谢,参与免疫和疾病预防,对于维持动物的正常生理活动至关重要。本研究通过高通量测序,对鸳鸯的肠道微生物进行分析,对患肠炎病的鸳鸯和健康群体的肠道微生物进行对比,尝试从微生物水平上揭示鸳鸯的致病机理。鸳鸯肠道微生物共鉴定出2020个操作分类单元(OTU),其序列相似性水平为97%。健康组和肠炎组共同的OTU数量为564个。健康组鸳鸯的微生物多样性指数与肠炎组之间无显著差异(Mann Whitney U test, p>0.05)。在门水平,鸳鸯的肠道微生物组成以厚壁菌门(Firmicutes)(73.46%),拟杆菌门(Bacteroidetes)(11.15%)和变形菌门(Proteobacteria)(8.72%)。在属水平,丰度最高的类别包括狭义梭菌属(Clostridium sensustricto 1)(14.84%),库特氏菌属(Kurthia)(12.37%)和乳杆菌属(Lactobacillus)(13.18%)等。健康组和肠炎组鸳鸯的肠道微生物组成间存在显著差异(Adonis,F=3.6087,p=0.009)。在肠炎组中共筛选出25个丰度显著高于健康组的类别,其中狭义梭菌属(Clostridium_sensu_stricto_1)、埃希氏志贺菌属和脱硫菌属的丰度最高(LDA>5,p<0.05),在肠道微生物区系中发挥着重要作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号