首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
African trypanosomes, including Trypanosoma brucei and the closely related species Trypanosoma evansi, are flagellated unicellular parasites that proliferate extracellularly in the mammalian bloodstream and tissue spaces. They evade host immune system by periodically switching their variant surface glycoprotein (VSG) coat. Each trypanosome possesses a vast archive of VSGs with distinct sequence identity and different strains contain different archive of VSGs. VSG 117 was reported as a widespread VSG detected in the genomes of all the T. brucei strains. In this study, the presence and expression of VSG 117 gene was observed in T. evansi YNB stock by RT-PCR with VSG-specific primers. We further confirmed that this VSG tends to be expressed in the early stage of T. evansi infections (on day 12-15) by immuno-screening the previously isolated infected blood samples. It is possible that the VSG 117 gene evolved and spread through the African trypanosome population via genetic exchange, before T. evansi lost its ability to infect tsetse fly. Our finding provided an evidence of the close evolutionary relationship between T. evansi and T. brucei, in the terms of VSG genes.  相似文献   

2.
In this study we employed randomly amplified polymorphic DNA patterns to assess the genetic relatedness among 14 Brazilian Trypanosoma evansi stocks from domestic and wild hosts, which are known to differ in biological characteristics. These akinetoplastic stocks were compared with one another, to three Old World (Ethiopia, China and Philippines) dyskinetoplastic stocks of T. evansi, and also with Trypanosoma equiperdum, Trypanosoma brucei brucei, Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense. Randomly amplified polymorphic DNA analysis showed limited heterogeneity in T. evansi stocks from different hosts and geographical regions of the world, or in other species of the subgenus Trypanozoon. However, minor variations generated random amplification of polymorphic DNA analysis disclosed a pattern consisting of a unique synapomorphic DNA fragment (termed Te664) for the T. evansi cluster that was not detected in any other trypanosome species investigated. Pulsed field gel electrophoresis analysis demonstrated that the Te664 fragment is a repetitive sequence, dispersed in intermediate and minichromosomes of T. evansi. Based on this sequence, we developed a conventional PCR assay for the detection of T. evansi using crude preparations of blood collected either on glass slides or on filter paper as template DNA. Our results showed that this assay may be useful as a diagnostic tool for field-epidemiological studies of T. evansi.  相似文献   

3.
4.
The tubulin genes of Trypanosoma cruzi   总被引:1,自引:0,他引:1  
The organization of the alpha- and beta-tubulin genes in the genome of Trypanosoma cruzi have been analysed by Southern blotting using tubulin probes derived from Trypanosoma brucei. The tubulin array appears to be more complex in this organism than in other members of the same family. Some tubulin genes are tightly clustered in an alternating (alpha-beta)n array with a basic repeat unit length of 4.3 kb. However, other pairs of alternating alpha- and beta-tubulin sequences appear to be physically separated from the basic group. This finding indicates that the tubulin gene cluster present in T. cruzi is less perfectly conserved than in T. brucei. T. (Herpetosoma) rangeli is similar to T. (Schizotrypanum) cruzi in its tubulin gene organization whereas most of these genes are tandemly clustered in the genome of T. (Trypanozoon) evansi, with a basic repeat unit length of 3.6 kb as previously described for T. (Trypanozoon) brucei. Two overlapping recombinant clones containing T. cruzi tubulin sequences have been isolated from a genomic cosmid library of T. cruzi epimastigotes using the T. brucei tubulin probes. Partial sequencing of the T. cruzi beta-tubulin gene has confirmed its identity and shows more than 70% homology with the sea urchin, chicken and T. b. rhodesiense beta-tubulin reported gene sequences. Analysis of tubulin gene organization through the parasite life cycle does not show evidence of major rearrangements within the repeat unit. Several T. cruzi strains and cloned lines whilst sharing the 4.3-kb tubulin repeat unit, exhibited very variable tubulin gene organization with tubulin probes. These striking differences in the organization of this structural gene among T. cruzi strains and cloned lines suggest that the heterogeneity previously reported in parasite populations may be related to a very dynamic, diploid genome.  相似文献   

5.
To clarify evolution and phylogenetic relationships of trypanosome alternative oxidase (AOX) molecules, AOX genes (cDNAs) of the African trypanosomes, Trypanosoma congolense and Trypanosoma evansi, were cloned by PCR. Both AOXs possess conserved consensus motifs (-E-, -EXXH-). The putative amino acid sequence of the AOX of T. evansi was exactly the same as that of T. brucei. A protein phylogeny of trypanosome AOXs revealed that three genetically and pathogenically distinct strains of T. congolense are closely related to each other. When all known AOX sequences collected from current databases were analyzed, the common ancestor of these three Trypanosoma species shared a sister-group position to T. brucei/T. evansi. Monophyly of Trypanosoma spp. was clearly supported (100% bootstrap value) with Trypanosoma vivax placed at the most basal position of the Trypanosoma clade. Monophyly of other eukaryotic lineages, terrestrial plants + red algae, Metazoa, diatoms, Alveolata, oomycetes, green algae, and Fungi, was reconstructed in the best AOX tree obtained from maximum likelihood analysis, although some of these clades were not strongly supported. The terrestrial plants + red algae clade showed the closest affinity with an alpha-proteobacterium, Novosphingobium aromaticivorans, and the common ancestor of these lineages, was separated from other eukaryotes. Although the root of the AOX subtree was not clearly determined, subsequent phylogenetic analysis of the composite tree for AOX and plastid terminal oxidase (PTOX) demonstrated that PTOX and related cyanobacterial sequences are of a monophyletic origin and their common ancestor is linked to AOX sequences.  相似文献   

6.
7.
In Trypanosoma brucei, uptake of host transferrin is mediated by a heterodimeric, glycosylphosphatidylinositol-anchored receptor derived from the 2 expression site-associated genes 6 and 7 (ESAG6 and ESAG7). By using specific antibodies, it is shown here that T. evansi, a trypanosome species transmitted mechanically by biting flies, also expresses a transferrin receptor composed of ESAG6 and ESAG7. The cellular uptake of transferrin in T. evansi is completely inhibited with anti-T. brucei (ESAG6/7 heterodimer) antibodies. The demonstration of a functional ESAG6/7 transferrin receptor in T. evansi supports further its close relationship to T. brucei.  相似文献   

8.
The African trypanosome genome   总被引:1,自引:0,他引:1  
The haploid nuclear genome of the African trypanosome, Trypanosoma brucei, is about 35 Mb and varies in size among different trypanosome isolates by as much as 25%. The nuclear DNA of this diploid organism is distributed among three size classes of chromosomes: the megabase chromosomes of which there are at least 11 pairs ranging from 1 Mb to more than 6 Mb (numbered I-XI from smallest to largest); several intermediate chromosomes of 200-900 kb and uncertain ploidy; and about 100 linear minichromosomes of 50-150 kb. Size differences of as much as four-fold can occur, both between the two homologues of a megabase chromosome pair in a specific trypanosome isolate and among chromosome pairs in different isolates. The genomic DNA sequences determined to date indicated that about 50% of the genome is coding sequence. The chromosomal telomeres possess TTAGGG repeats and many, if not all, of the telomeres of the megabase and intermediate chromosomes are linked to expression sites for genes encoding variant surface glycoproteins (VSGs). The minichromosomes serve as repositories for VSG genes since some but not all of their telomeres are linked to unexpressed VSG genes. A gene discovery program, based on sequencing the ends of cloned genomic DNA fragments, has generated more than 20 Mb of discontinuous single-pass genomic sequence data during the past year, and the complete sequences of chromosomes I and II (about 1 Mb each) in T. brucei GUTat 10.1 are currently being determined. It is anticipated that the entire genomic sequence of this organism will be known in a few years. Analysis of a test microarray of 400 cDNAs and small random genomic DNA fragments probed with RNAs from two developmental stages of T. brucei demonstrates that the microarray technology can be used to identify batteries of genes differentially expressed during the various life cycle stages of this parasite.  相似文献   

9.
We have defined the genomic organization and genomic context of a Trypanosoma brucei brucei gene family encoding variant surface glycoproteins (VSGs). This gene family is neither tandemly repeated nor closely linked in the genome, and is not located on small or intermediate size chromosomes. Two dispersed repeated sequence elements, RIME-ingi and the upstream repeat sequence, are linked to members of this gene family; however, the upstream repeat sequences are closely linked only to the basic copy. In other isolates of T.b. brucei this gene family appears conserved with some variation; a restriction fragment length polymorphism found among these isolates suggests the hypothesis that VSG genes may occasionally be diploid. A model accounting for both the generation of dispersed families of VSG genes, and for the interstrain variability of VSG genes, is proposed.  相似文献   

10.
Trypanosoma cruzi is the causative agent of Chagas disease, which affects more than 9 million people in Latin America. We have generated a draft genome sequence of the TcI strain Sylvio X10/1 and compared it to the TcVI reference strain CL Brener to identify lineage-specific features. We found virtually no differences in the core gene content of CL Brener and Sylvio X10/1 by presence/absence analysis, but 6 open reading frames from CL Brener were missing in Sylvio X10/1. Several multicopy gene families, including DGF, mucin, MASP and GP63 were found to contain substantially fewer genes in Sylvio X10/1, based on sequence read estimations. 1,861 small insertion-deletion events and 77,349 nucleotide differences, 23% of which were non-synonymous and associated with radical amino acid changes, further distinguish these two genomes. There were 336 genes indicated as under positive selection, 145 unique to T. cruzi in comparison to T. brucei and Leishmania. This study provides a framework for further comparative analyses of two major T. cruzi lineages and also highlights the need for sequencing more strains to understand fully the genomic composition of this parasite.  相似文献   

11.
The majority of Trypanosoma evansi can be detected using diagnostic tests based on the variant surface glycoprotein (VSG) of Trypanosoma evansi Rode Trypanozoon antigen type (RoTat) 1.2. Exceptions are a number of T. evansi isolated in Kenya. To characterize T. evansi that are undetected by RoTat 1.2, we cloned and sequenced the VSG cDNA from T. evansi JN 2118Hu, an isolate devoid of the RoTat 1.2 VSG gene. A 273 bp DNA segment of the VSG gene was targeted in PCR amplification for the detection of non-RoTat 1.2 T. evansi. Genomic DNA samples from different trypanosomes were tested including 32 T. evansi, 10 Trypanosoma brucei, three Trypanosoma congolense, and one Trypanosoma vivax. Comparison was by PCR amplification of a 488 bp fragment of RoTat1.2 VSG gene. Results showed that the expected 273 bp amplification product was present in all five non-RoTat 1.2 T. evansi tested and was absent in all 27 RoTat 1.2-positive T. evansi tested. It was also absent in all other trypanosomes tested. The PCR test developed in this study is specific for non-RoTat 1.2 T. evansi.  相似文献   

12.
After 100 years of research, only a small number of laboratory strains of Trypanosoma equiperdum exists, and the history of most of the strains is unknown. No definitive diagnosis of dourine can be made at the serological or molecular level. Only clinical signs are pathognomonic and international screening relies on an outdated cross-reactive serological test (the complement-fixation test) from 1915, resulting in serious consequences at the practical level. Despite many characterization attempts, no clear picture has emerged of the position of T. equiperdum within the Trypanozoon group. In this article, we highlight the controversies that exist regarding T. equiperdum, and the overlap that occurs with Trypanosoma evansi and Trypanosoma brucei brucei. By revisiting the published data, from the early decades of discovery to the recent serological- and molecular-characterization studies, a new hypothesis arises in which T. equiperdum no longer exists as a separate species and in which current strains can be divided into T. evansi (the historical mistake) and Trypanosoma brucei equiperdum (the master of disguise). Hence, dourine is a disease caused by specific host immune responses to a T. b. equiperdum or T. evansi infection.  相似文献   

13.
The ingi (long and autonomous) and RIME (short and nonautonomous) non--long-terminal repeat retrotransposons are the most abundant mobile elements characterized to date in the genome of the African trypanosome Trypanosoma brucei. These retrotransposons were thought to be randomly distributed, but a detailed and comprehensive analysis of their genomic distribution had not been performed until now. To address this question, we analyzed the ingi/RIME sequences and flanking sequences from the ongoing T. brucei genome sequencing project (TREU927/4 strain). Among the 81 ingi/RIME elements analyzed, 60% are complete, and 7% of the ingi elements (approximately 15 copies per haploid genome) appear to encode for their own transposition. The size of the direct repeat flanking the ingi/RIME retrotransposons is conserved (i.e., 12-bp), and a strong 11-bp consensus pattern precedes the 5'-direct repeat. The presence of a consensus pattern upstream of the retroelements was confirmed by the analysis of the base occurrence in 294 GSS containing 5'-adjacent ingi/RIME sequences. The conserved sequence is present upstream of ingis and RIMEs, suggesting that ingi-encoded enzymatic activities are used for retrotransposition of RIMEs, which are short nonautonomous retroelements. In conclusion, the ingi and RIME retroelements are not randomly distributed in the genome of T. brucei and are preceded by a conserved sequence, which may be the recognition site of the ingi-encoded endonuclease.  相似文献   

14.
An ordered restriction map of the ribosomal RNA genes of Trypanosoma brucei brucei is presented. Bgl II fragments of T.b.brucei genomic DNA were cloned into pAT 153, and the clones containing rDNA identified. Restriction maps were established and the sense strands identified. One clone was shown by heteroduplex mapping to contain a 1.1 kb inserted sequence which was demonstrated to be widely distributed throughout the genomes of members of the subgenus Trypanozoon. However, in two other subgenera of Trypanosoma, Nannomonas and Schizotrypanum, the sequence is far less abundant. Analysis of the genomic DNA from two serodemes of T.b.brucei showed that the sequence was present in the rRNA of only one of them, implying that the sequence is a mobile element and that its appearance in rDNA is a comparitively recent occurrence.  相似文献   

15.
采用限制性内切酶消化、琼脂糖凝胶电泳及分子杂交技术对8株中国伊氏锥虫动基体DNA微环进行了比较研究。结果显示,我国伊氏锥虫株之间的kDNA微环序列具有较高的同源性,仅限制酶AluI,HinfI及MblI的酶解结果显示少数虫株的kDNA微环存在异源序列。这种异源性可以作为伊氏锥虫种内分类的遗传学标志。  相似文献   

16.
The parasitic protozoa Trypanosoma brucei has a complex life cycle. Oxidative phosphorylation is highly active in the procyclic form but absent from bloodstream cells. The mitochondrial genome encodes several gene products that are required for oxidative phosphorylation, but it completely lacks tRNA genes. For mitochondrial translation to occur, the import of cytosolic tRNAs is therefore essential for procyclic T. brucei. Whether the same is true for the bloodstream form has not been studied so far. Here we show that the steady-state levels of mitochondrial tRNAs are essentially the same in both life stages. Editing of the imported tRNA(Trp) also occurs in both forms as well as in mitochondria of Trypanosoma evansi, which lacks a genome and a translation system. These results show that mitochondrial tRNA import is a constitutive process that must be mediated by proteins that are expressed in both forms of the life cycle and that are not encoded in the mitochondrial genome. Moreover, bloodstream cells lacking either mitochondria-specific translation elongation factor Tu or mitochondrial tryptophanyl-tRNA synthetase are not viable indicating that mitochondrial translation is also essential in this stage. Both of these proteins show trypanosomatid-specific features and may therefore be excellent novel drug targets.  相似文献   

17.
Nuclear extrachromosomal DNA elements have been identified in several kinetoplastids such as Leishmania and Trypanosoma cruzi, but never in Trypanosoma brucei. They can occur naturally or arise spontaneously as the result of sublethal drug exposure of parasites. In most cases, they are represented as circular elements and are mitotically unstable. In this study we describe the presence of circular DNA in the nucleus of Trypanosoma brucei. This novel type of DNA was termed NR-element (NlaIII repeat element). In contrast to drug-induced episomes in other kinetoplastids, the T. brucei extrachromosomal NR-element is not generated by drug selection. Furthermore, the element is stable during mitosis over many generations. Restriction analysis of tagged NR-element DNA, unusual migration patterns during pulsed field gel electrophoresis (PFGE) and CsCl/ethidium bromide equilibrium centrifugation demonstrates that the NR-element represents circular DNA. Whereas it has been found in all field isolates of the parasites we analysed, it is not detectable in some laboratory strains notably the genome reference strain 927. The DNA sequence of this element is related to a 29 bp repeat present in the subtelomeric region of VSG-bearing chromosomes of T. brucei. It has been suggested that this subtelomeric region is part of a transition zone on chromosomes separating the relatively stable telomeric repeats from the recombinationaly active region downstream of VSG genes. Therefore, we discuss a functional connection between the occurrence of this circular DNA and subtelomeric recombination events in T. brucei.  相似文献   

18.
Identification of a telomeric DNA sequence in Trypanosoma brucei   总被引:35,自引:0,他引:35  
E H Blackburn  P B Challoner 《Cell》1984,36(2):447-457
A simple repetitive DNA sequence in the nuclear genome of Trypanosoma brucei, consisting of tandem repeats of the hexanucleotide 5' CCCTAA 3', was identified as being telomeric by several criteria. This sequence was specifically labeled with T. brucei genomic DNA as the template for in vitro nick translation by DNA polymerase I, and was present in Bal 31 nuclease sensitive, genomic restriction fragments of the large sizes expected in this organism for at least some telomeric regions. The same repeated sequence was found in six other flagellates tested. A segment of DNA from T. brucei including this telomeric sequence was cloned in pBR322 and characterized. The cloned segment contained a sequence highly homologous to the 3' ends of several variant surface glycoprotein mRNAs, upstream of the tandemly repeated hexanucleotide sequence.  相似文献   

19.
20.
The protozoan Trypanosoma evansi is described as presenting high morphological and genetic similarities among the isolates despite its biological heterogeneity and wide geographical distribution. PCR amplification of the internal transcribed spacers of the ribosomal gene in combination with the coding region of the 5.8S ribosomal subunit further submitted to restriction enzymes digestion were carried out in DNAs extracted from 41 T. evansi strains isolated from horses, dogs, coatis and capybaras from two distinct regions of the Brazilian Pantanal. We also used one T. evansi isolate from Africa, one from Asia and one isolate of T. b. brucei from Africa. Analysis of the RFLP profiles yielded a unique "riboprinting" that does not vary intraspecifically. These results provide insights on the ribosomal gene organization of T. evansi and showed that ITS analysis by RFLP show high genetic similarity of this locus among isolates of this protozoan parasite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号