首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 432 毫秒
1.
Next-generation sequencing(NGS) technologies have made high-throughput sequencing available to medium- and small-size laboratories, culminating in a tidal wave of genomic information. The quantity of sequenced bacterial genomes has not only brought excitement to the field of genomics but also heightened expectations that NGS would boost antibacterial discovery and vaccine development. Although many possible drug and vaccine targets have been discovered, the success rate of genome-based analysis has remained below expectations. Furthermore, NGS has had consequences for genome quality, resulting in an exponential increase in draft(partial data) genome deposits in public databases. If no further interests are expressed for a particular bacterial genome, it is more likely that the sequencing of its genome will be limited to a draft stage, and the painstaking tasks of completing the sequencing of its genome and annotation will not be undertaken. It is important to know what is lost when we settle for a draft genome and to determine the "scientific value" of a newly sequenced genome. This review addresses the expected impact of newly sequenced genomes on antibacterial discovery and vaccinology. Also, it discusses the factors that could be leading to the increase in the number of draft deposits and the consequent loss of relevant biological information.  相似文献   

2.
新一代测序技术(NGS)的文库制备方法在基因组的拼装中起着重要作用。但是NGS技术制备的普通DNA文库片段只有500 bp左右,难以满足复杂基因组的从头(de novo)拼装要求。三代测序技术的读长可以达到20 kb,但是其高错误率及测序成本过高使得其又不易推广。因此二代测序的Mate-paired文库制备技术一直在基因组的de novo拼装中扮演着非常重要的角色。目前主流的NGS平台Illumina制备的Mate-paired文库的片段范围只有2~5 kb,为了得到更长的可用于Illumina平台测序的Mate-paired文库,本研究首次整合并优化了Illumina和Roche/454两种测序平台的Mate-paired文库制备技术,采用诱导环化酶来提高基因组长片段DNA的环化效率,成功建立了20 kb Mate-paired文库制备技术,并已将该技术应用于人类基因组20 kb Mate-paired文库制备。该技术为Illumina平台制备长片段Mate-paired库提供了方法指导。  相似文献   

3.
The affordability of next generation sequencing (NGS) is transforming the field of mutation analysis in bacteria. The genetic basis for phenotype alteration can be identified directly by sequencing the entire genome of the mutant and comparing it to the wild-type (WT) genome, thus identifying acquired mutations. A major limitation for this approach is the need for an a-priori sequenced reference genome for the WT organism, as the short reads of most current NGS approaches usually prohibit de-novo genome assembly. To overcome this limitation we propose a general framework that utilizes the genome of relative organisms as mediators for comparing WT and mutant bacteria. Under this framework, both mutant and WT genomes are sequenced with NGS, and the short sequencing reads are mapped to the mediator genome. Variations between the mutant and the mediator that recur in the WT are ignored, thus pinpointing the differences between the mutant and the WT. To validate this approach we sequenced the genome of Bdellovibrio bacteriovorus 109J, an obligatory bacterial predator, and its prey-independent mutant, and compared both to the mediator species Bdellovibrio bacteriovorus HD100. Although the mutant and the mediator sequences differed in more than 28,000 nucleotide positions, our approach enabled pinpointing the single causative mutation. Experimental validation in 53 additional mutants further established the implicated gene. Our approach extends the applicability of NGS-based mutant analyses beyond the domain of available reference genomes.  相似文献   

4.
RAD-seq技术在基因组研究中的现状及展望   总被引:4,自引:0,他引:4  
王洋坤  胡艳  张天真 《遗传》2014,36(1):41-49
Restriction-site associated DNA sequencing(RAD-seq)技术是在二代测序基础上发展起来的一项基于全基因组酶切位点的简化基因组测序技术。该方法技术流程简单, 不受有无参考基因组的限制, 可大大简化基因组的复杂性, 减少实验费用, 通过一次测序就可以获得数以万计的多态性标记。目前, RAD-seq技术已成功应用于超高密度遗传图谱的构建、重要性状的精细定位、辅助基因组序列组装、群体基因组学以及系统发生学等基因组研究热点领域。文章主要介绍了RAD-seq的技术原理、技术发展及其在基因组研究中的广泛应用。鉴于RAD-seq方法的独特性, 该技术必将在复杂基因组研究领域具有广泛的应用前景。  相似文献   

5.
Next-generation sequencing (NGS) is arguably one of the most significant technological advances in the biological sciences of the last 30 years. The second generation sequencing platforms have advanced rapidly to the point that several genomes can now be sequenced simultaneously in a single instrument run in under two weeks. Targeted DNA enrichment methods allow even higher genome throughput at a reduced cost per sample. Medical research has embraced the technology and the cancer field is at the forefront of these efforts given the genetic aspects of the disease. World-wide efforts to catalogue mutations in multiple cancer types are underway and this is likely to lead to new discoveries that will be translated to new diagnostic, prognostic and therapeutic targets. NGS is now maturing to the point where it is being considered by many laboratories for routine diagnostic use. The sensitivity, speed and reduced cost per sample make it a highly attractive platform compared to other sequencing modalities. Moreover, as we identify more genetic determinants of cancer there is a greater need to adopt multi-gene assays that can quickly and reliably sequence complete genes from individual patient samples. Whilst widespread and routine use of whole genome sequencing is likely to be a few years away, there are immediate opportunities to implement NGS for clinical use. Here we review the technology, methods and applications that can be immediately considered and some of the challenges that lie ahead.  相似文献   

6.
This article reviews basic concepts,general applications,and the potential impact of next-generation sequencing(NGS)technologies on genomics,with particular reference to currently available and possible future platforms and bioinformatics.NGS technologies have demonstrated the capacity to sequence DNA at unprecedented speed,thereby enabling previously unimaginable scientific achievements and novel biological applications.But,the massive data produced by NGS also presents a significant challenge for data storage,analyses,and management solutions.Advanced bioinformatic tools are essential for the successful application of NGS technology.As evidenced throughout this review,NGS technologies will have a striking impact on genomic research and the entire biological field.With its ability to tackle the unsolved challenges unconquered by previous genomic technologies,NGS is likely to unravel the complexity of the human genome in terms of genetic variations,some of which may be confined to susceptible loci for some common human conditions.The impact of NGS technologies on genomics will be far reaching and likely change the field for years to come.  相似文献   

7.
8.
Elucidation of the rice genome is expected to broaden our understanding of genes related to the agronomic characteristics and the genetic relationship among cultivars. In this study, we conducted whole-genome sequencings of 6 cultivars, including 5 temperate japonica cultivars and 1 tropical japonica cultivar (Moroberekan), by using next-generation sequencing (NGS) with Nipponbare genome as a reference. The temperate japonica cultivars contained 2 sake brewing (Yamadanishiki and Gohyakumangoku), 1 landrace (Kameji), and 2 modern cultivars (Koshihikari and Norin 8). Almost >83% of the whole genome sequences of the Nipponbare genome could be covered by sequenced short-reads of each cultivar, including Omachi, which has previously been reported to be a temperate japonica cultivar. Numerous single nucleotide polymorphisms (SNPs), insertions, and deletions were detected among the various cultivars and the Nipponbare genomes. Comparison of SNPs detected in each cultivar suggested that Moroberekan had 5-fold more SNPs than the temperate japonica cultivars. Success of the 2 approaches to improve the efficacy of sequence data by using NGS revealed that sequencing depth was directly related to sequencing coverage of coding DNA sequences: in excess of 30× genome sequencing was required to cover approximately 80% of the genes in the rice genome. Further, the contigs prepared using the assembly of unmapped reads could increase the value of NGS short-reads and, consequently, cover previously unavailable sequences. These approaches facilitated the identification of new genes in coding DNA sequences and the increase of mapping efficiency in different regions. The DNA polymorphism information between the 7 cultivars and Nipponbare are available at NGRC_Rices_Build1.0 (http://www.nodai-genome.org/oryza_sativa_en.html).  相似文献   

9.
Use of sequencing approaches is an important aspect in the field of cancer genomics, where next‐generation sequencing has already been utilized for targeting oncogenes or tumour‐suppressor genes, that can be sequenced in a short time period. Alterations such as point mutations, insertions/deletions, copy number alterations, chromosomal rearrangements and epigenetic changes are encountered in cancer cell genomes, and application of various NGS technologies in cancer research will encounter such modifications. Rapid advancement in technology has led to exponential growth in the field of genomic analysis. The $1000 Genome Project (in which the goal is to sequence an entire human genome for $1000), and deep sequencing techniques (which have greater accuracy and provide a more complete analysis of the genome), are examples of rapid advancements in the field of cancer genomics. In this mini review, we explore sequencing techniques, correlating their importance in cancer therapy and treatment.  相似文献   

10.
Next‐generation sequencing (NGS) provides a powerful tool for the discovery of important genes and alleles in crop plants and their wild relatives. Despite great advances in NGS technologies, whole‐genome shotgun sequencing is cost‐prohibitive for species with complex genomes. An attractive option is to reduce genome complexity to a single chromosome prior to sequencing. This work describes a strategy for studying the genomes of distant wild relatives of wheat by isolating single chromosomes from addition or substitution lines, followed by chromosome sorting using flow cytometry and sequencing of chromosomal DNA by NGS technology. We flow‐sorted chromosome 5Mg from a wheat/Aegilops geniculata disomic substitution line [DS5Mg (5D)] and sequenced it using an Illumina HiSeq 2000 system at approximately 50 × coverage. Paired‐end sequences were assembled and used for structural and functional annotation. A total of 4236 genes were annotated on 5Mg, in close agreement with the predicted number of genes on wheat chromosome 5D (4286). Single‐gene FISH indicated no major chromosomal rearrangements between chromosomes 5Mg and 5D. Comparing chromosome 5Mg with model grass genomes identified synteny blocks in Brachypodium distachyon, rice (Oryza sativa), sorghum (Sorghum bicolor) and barley (Hordeum vulgare). Chromosome 5Mg‐specific SNPs and cytogenetic probe‐based resources were developed and validated. Deletion bin‐mapped and ordered 5Mg SNP markers will be useful to track 5M‐specific introgressions and translocations. This study provides a detailed sequence‐based analysis of the composition of a chromosome from a distant wild relative of bread wheat, and opens up opportunities to develop genomic resources for wild germplasm to facilitate crop improvement.  相似文献   

11.

Background  

Next-generation sequencing (NGS) offers a unique opportunity for high-throughput genomics and has potential to replace Sanger sequencing in many fields, including de-novo sequencing, re-sequencing, meta-genomics, and characterisation of infectious pathogens, such as viral quasispecies. Although methodologies and software for whole genome assembly and genome variation analysis have been developed and refined for NGS data, reconstructing a viral quasispecies using NGS data remains a challenge. This application would be useful for analysing intra-host evolutionary pathways in relation to immune responses and antiretroviral therapy exposures. Here we introduce a set of formulae for the combinatorial analysis of a quasispecies, given a NGS re-sequencing experiment and an algorithm for quasispecies reconstruction. We require that sequenced fragments are aligned against a reference genome, and that the reference genome is partitioned into a set of sliding windows (amplicons). The reconstruction algorithm is based on combinations of multinomial distributions and is designed to minimise the reconstruction of false variants, called in-silico recombinants.  相似文献   

12.
Advancements in next-generation sequencing technology have enabled whole genome re-sequencing in many species providing unprecedented discovery and characterization of molecular polymorphisms. There are limitations, however, to next-generation sequencing approaches for species with large complex genomes such as barley and wheat. Genotyping-by-sequencing (GBS) has been developed as a tool for association studies and genomics-assisted breeding in a range of species including those with complex genomes. GBS uses restriction enzymes for targeted complexity reduction followed by multiplex sequencing to produce high-quality polymorphism data at a relatively low per sample cost. Here we present a GBS approach for species that currently lack a reference genome sequence. We developed a novel two-enzyme GBS protocol and genotyped bi-parental barley and wheat populations to develop a genetically anchored reference map of identified SNPs and tags. We were able to map over 34,000 SNPs and 240,000 tags onto the Oregon Wolfe Barley reference map, and 20,000 SNPs and 367,000 tags on the Synthetic W9784 × Opata85 (SynOpDH) wheat reference map. To further evaluate GBS in wheat, we also constructed a de novo genetic map using only SNP markers from the GBS data. The GBS approach presented here provides a powerful method of developing high-density markers in species without a sequenced genome while providing valuable tools for anchoring and ordering physical maps and whole-genome shotgun sequence. Development of the sequenced reference genome(s) will in turn increase the utility of GBS data enabling physical mapping of genes and haplotype imputation of missing data. Finally, as a result of low per-sample costs, GBS will have broad application in genomics-assisted plant breeding programs.  相似文献   

13.
14.
Generating a contiguous, ordered reference sequence of a complex genome such as hexaploid wheat (2n = 6x = 42; approximately 17 GB) is a challenging task due to its large, highly repetitive, and allopolyploid genome. In wheat, ordering of whole‐genome or hierarchical shotgun sequencing contigs is primarily based on recombination and comparative genomics‐based approaches. However, comparative genomics approaches are limited to syntenic inference and recombination is suppressed within the pericentromeric regions of wheat chromosomes, thus, precise ordering of physical maps and sequenced contigs across the whole‐genome using these approaches is nearly impossible. We developed a whole‐genome radiation hybrid (WGRH) resource and tested it by genotyping a set of 115 randomly selected lines on a high‐density single nucleotide polymorphism (SNP) array. At the whole‐genome level, 26 299 SNP markers were mapped on the RH panel and provided an average mapping resolution of approximately 248 Kb/cR1500 with a total map length of 6866 cR1500. The 7296 unique mapping bins provided a five‐ to eight‐fold higher resolution than genetic maps used in similar studies. Most strikingly, the RH map had uniform bin resolution across the entire chromosome(s), including pericentromeric regions. Our research provides a valuable and low‐cost resource for anchoring and ordering sequenced BAC and next generation sequencing (NGS) contigs. The WGRH developed for reference wheat line Chinese Spring (CS‐WGRH), will be useful for anchoring and ordering sequenced BAC and NGS based contigs for assembling a high‐quality, reference sequence of hexaploid wheat. Additionally, this study provides an excellent model for developing similar resources for other polyploid species.  相似文献   

15.
During the past decade, next generation sequencing (NGS) technologies have provided new insights into the diversity, dynamics, and metabolic pathways of natural microbial communities. But, these new techniques face challenges related to the genome size and level of genome complexity of the species under investigation. Moreover, the coverage depth and the short-read length achieved by NGS based approaches also represent a major challenge for assembly. These factors could limit the use of these high-throughput sequencing methods for species lacking a reference genome and characterized by a high level of complexity. In the present work, the evolutionary history, mainly consisting of gene transfer events from bacteria and unicellular eukaryotes to microalgae, including harmful species, is discussed and reviewed as it relates to NGS application in microbial communities, with a particular focus on harmful algal bloom species and dinoflagellates. In the context of genetic population studies, genotyping-by-sequencing (GBS), an NGS based approach, could be used for the discovery and analysis of single nucleotide polymorphisms (SNPs). The NGS technologies are still relatively new and require further improvement. Specifically, there is a need to develop and standardize tools and approaches to handle large data sets, which have to be used for the majority of HAB species characterized by evolutionary highly dynamic genomes.  相似文献   

16.
17.

Purpose of Review

Comparative genome sequencing studies of human fungal pathogens enable identification of genes and variants associated with virulence and drug resistance. This review describes current approaches, resources, and advances in applying whole genome sequencing to study clinically important fungal pathogens.

Recent Findings

Genomes for some important fungal pathogens were only recently assembled, revealing gene family expansions in many species and extreme gene loss in one obligate species. The scale and scope of species sequenced is rapidly expanding, leveraging technological advances to assemble and annotate genomes with higher precision. By using iteratively improved reference assemblies or those generated de novo for new species, recent studies have compared the sequence of isolates representing populations or clinical cohorts. Whole genome approaches provide the resolution necessary for comparison of closely related isolates, for example, in the analysis of outbreaks or sampled across time within a single host.

Summary

Genomic analysis of fungal pathogens has enabled both basic research and diagnostic studies. The increased scale of sequencing can be applied across populations, and new metagenomic methods allow direct analysis of complex samples.
  相似文献   

18.
The unparalleled efficiency of next-generation sequencing (NGS) has prompted widespread adoption, but significant problems remain in the use of NGS data for whole genome assembly. We explore the advantages and disadvantages of chicken genome assemblies generated using a variety of sequencing and assembly methodologies. NGS assemblies are equivalent in some ways to a Sanger-based assembly yet deficient in others. Nonetheless, these assemblies are sufficient for the identification of the majority of genes and can reveal novel sequences when compared to existing assembly references.  相似文献   

19.
张棋麟  袁明龙 《昆虫学报》2013,56(12):1489-1508
新一代测序技术具有快速、 高通量和低成本的特点, 为“组学”研究带来了新方法、 新方案, 正在深刻地改变着当前生物学的研究模式。近年来, 新一代测序技术极大促进了昆虫特别是无参考基因组信息昆虫的转录组学研究。自2008年至今, 采用新一代测序技术已对7个目的68种昆虫进行了转录组测序, 其中由我国学者完成了6个目的22种昆虫的转录组测序。目前, 昆虫转录组学研究主要集中在基因挖掘、 分子标记开发、 基因表达分析等方面, 为全面揭示昆虫生命活动中相关基因功能、 系统发生与进化以及昆虫与其他生物相互作用等奠定了基础。本文总结了当前昆虫转录组学研究的已有成果, 分析了其今后的发展趋势, 讨论了采用新一代测序技术开展昆虫转录组学研究中存在的诸如研究对象相对局限、 测序准确性不够高等不足, 并指出开展昆虫转录组学研究时需充分思考所要回答的科学问题, 选择合适的研究策略, 评估性价比, 以及开发转录组信息高效利用的方法等。作者建议未来的研究方向侧重于: (1)大规模开展基于新一代测序技术的昆虫转录组学研究, 特别是对其他目以及独特生态环境中的代表性昆虫应予以重点关注; (2)开发昆虫转录组数据存储及分析的软硬件; (3)合理利用新一代测序技术研究昆虫转录组并充分挖掘已测昆虫转录组中的遗传信息。  相似文献   

20.

Background

The emergence of next generation sequencing (NGS) has provided the means for rapid and high throughput sequencing and data generation at low cost, while concomitantly creating a new set of challenges. The number of available assembled microbial genomes continues to grow rapidly and their quality reflects the quality of the sequencing technology used, but also of the analysis software employed for assembly and annotation.

Methodology/Principal Findings

In this work, we have explored the quality of the microbial draft genomes across various sequencing technologies. We have compared the draft and finished assemblies of 133 microbial genomes sequenced at the Department of Energy-Joint Genome Institute and finished at the Los Alamos National Laboratory using a variety of combinations of sequencing technologies, reflecting the transition of the institute from Sanger-based sequencing platforms to NGS platforms. The quality of the public assemblies and of the associated gene annotations was evaluated using various metrics. Results obtained with the different sequencing technologies, as well as their effects on downstream processes, were analyzed. Our results demonstrate that the Illumina HiSeq 2000 sequencing system, the primary sequencing technology currently used for de novo genome sequencing and assembly at JGI, has various advantages in terms of total sequence throughput and cost, but it also introduces challenges for the downstream analyses. In all cases assembly results although on average are of high quality, need to be viewed critically and consider sources of errors in them prior to analysis.

Conclusion

These data follow the evolution of microbial sequencing and downstream processing at the JGI from draft genome sequences with large gaps corresponding to missing genes of significant biological role to assemblies with multiple small gaps (Illumina) and finally to assemblies that generate almost complete genomes (Illumina+PacBio).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号