首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
氮形态转化途径研究的新进展—厌气铵氧化及其应用前景   总被引:7,自引:0,他引:7  
20世纪90年代初在污泥处理系统中发现了氮素形态转化的新途径-厌气铵氧化过程,厌气铵氧化过程是铵以亚硝酸根为电子受体在自养细菌参数下氧化成氮气的过程,但目前尚无土壤,河,湖,海底泥等自然系统中是否存在厌氧铵氧化过程的报道,由于该过程无需外加有机碳,耗氧和处理产生污泥少,用于污泥脱氮成本较低,具有很大潜力。  相似文献   

2.
苏雷  向韬  李倩倩  马哲 《微生物学报》2023,63(4):1379-1391
厌氧氨氧化菌(anaerobic ammonia-oxidizing bacteria, AnAOB)的代谢多样性,使得该菌群能够在海洋、湿地和陆地等不同的自然生态系统中广泛分布,甚至在一些极热和极寒环境中也检测到了该菌群的存在。本文回顾并总结了厌氧氨氧化菌在不同生态系统中的发现、分布及脱氮贡献等方面的研究,分析了厌氧氨氧化菌分布的主要环境影响因素。该综述将帮助我们更好地理解全球氮循环中厌氧氨氧化菌的实际角色和功能,并基于厌氧氨氧化(anaerobicammoniaoxidation,anammox)过程,探究能与其进行协作的新型生物脱氮工艺,以期为这些工艺的研发和推广提供生态学基础和新的思考,从而实现脱氮工艺的技术变革。  相似文献   

3.
单级自养脱氮系统中厌氧氨氧化菌的分子生物学鉴定   总被引:3,自引:0,他引:3  
对具有厌氧氨氧化作用的细菌进行更深入的分析有助于了解该菌在生物脱氮过程的应用。对稳定运行、氨氮转化率及总氮去除率分别达到90%及80%左右的单级自养脱氮系统的底部取活性污泥,采用分子生物学方法提取活性污泥细菌总DNA,利用特异引物Pla46rc/Amx820对单级自养脱氮系统中的厌氧氨氧化菌16S rDNA基因进行PCR扩增。扩增产物经克隆、测序及BLAST分析,结果表明该单级自养脱氮系统中存在的厌氧氨氧化菌与Candidatus Kueneniastuttgartiensis和Candidatus Brocadia anammoxidans的16S rDNA序列同源性达99%,进化分析证明与Candidatus Kuenenia stuttgartiensis进化上较为接近。  相似文献   

4.
厌氧氨氧化生物脱氮技术的研究进展   总被引:7,自引:0,他引:7  
厌氧氨氧化是指在厌氧条件下,厌氧氨氧化混合菌直接以NH4 为电子供体,以NO3-或NO2-为电子受体,将NH4^ 、NO3-或NO2-转变成N2的过程。厌氧氨氧化作为一种新型的污水处理工艺具有较高的理论意义和良好的应用前景。本文主要阐述了厌氧氨氧化生物脱氮技术原理、厌氧氨氧化的可能途径、方法及其应用现状,并且讨论了厌氧氨氧化反应的微生物学机理和厌氧氨氧化工艺的开发,提出了今后研究的主要方向。  相似文献   

5.
全程自养脱氮是一种在高氨氮低溶氧条件下完全由自养菌群作用脱除氮素的现象.以全程自养脱氮污泥为研究对象,特异性扩增氨单加氧酶活性基因amoA片段,建立克隆文库并对克隆序列进行系统发育学分析,考察全程自养脱氮系统从建立到退化过程中氨氧化菌的结构变迁.结果表明:Nitrosomonas oligotropha和Nitrosomonas europaea细菌是系统中的主要氨氧化菌,而随着系统的退化前者逐渐被后者完全取代,而氨氧化菌的种群变迁可能并不是全混流系统全程自养脱氮效率下降的原因.  相似文献   

6.
海洋氮循环中细菌的厌氧氨氧化   总被引:5,自引:0,他引:5       下载免费PDF全文
细菌厌氧氨氧化过程是在一类特殊细菌的厌氧氨氧化体内完成的以氨作为电子供体硝酸盐作为电子受体的一种新型脱氮反应.厌氧氨氧化菌的发现,改变人们对传统氮的生物地球化学循环的认识:反硝化细菌并不是大气中氮气产生的唯一生物类群.而且越来越多的证据表明,细菌厌氧氨氧化与全球的氮物质循环密切相关,估计海洋细菌的厌氧氨氧化过程占到全球海洋氮气产生的一半左右.由于氮与碳的循环密切相关,因此可以推测,细菌的厌氧氨氧化会影响大气中的二氧化碳浓度,从而对全球气候变化产生重要影响.另外,由于细菌厌氧氨氧化菌实现了氨氮的短程转化,缩短了氮素的转化过程,因此为开发更节约能源、更符合可持续发展要求的废水脱氮新技术提供了生物学基础.  相似文献   

7.
甲烷氧化菌利用甲烷作为唯一碳源和能源,在氧化甲烷的过程中能有效地实现脱氮,该过程分为好氧甲烷氧化耦合反硝化(aerobic methane oxidation coupled to denitrification,AME-D)和厌氧甲烷氧化耦合反硝化(anaerobic methane oxidation coupled to denitrification,ANME-D),在碳循环和氮循环的研究中具有重要意义。本文通过总结近年来有关甲烷氧化菌的分类与分布,阐述AME-D和ANME-D的基本原理、影响因素和应用情况,提出相应的研究方向,以期为甲烷氧化菌在污水脱氮中的应用提供参考。  相似文献   

8.
目的:对UASB-生物膜反应器进行厌氧氨氧化反应的启动研究。方法:以自配含氨氮和亚硝氮的废水为进水,以氧化沟工艺城市污水处理厂回流污泥为接种污泥。结果:反应器内部菌群进行了竞争,在运行至第66d时氨氮、亚硝酸盐氮的去除率分别达到了60.4%、58.7%,同时有硝酸盐氮生成,表明厌氧氨氧化反应已经成为反应器内的主导反应。结论:厌氧氨氧化反应器实现了快速启动。  相似文献   

9.
污水和污泥的处理过程中会产生大量的恶臭气体硫化氢(H2S)。脱氮硫杆菌是氧化H2S和其他硫化物的重要的脱硫工程菌。本文阐述了脱氮硫杆菌的生物学特性和氧化H2S的两种途径。分析了反应体系中的硫化物负荷、硝酸盐和亚硝酸盐的浓度、氧含量以及pH值等因素对氧化效果、反应速率、氧化途径及产物形式的影响。介绍了脱氮硫杆菌在恶臭污染治理中的应用及其在同步处理含氮含硫恶臭物质方面的发展趋势。  相似文献   

10.
白刃  贺纪正  沈菊培  陈新  张丽梅 《生态学报》2016,36(13):3871-3881
厌氧铵氧化是由微生物介导的氮素循环过程中的重要途径之一。近20年来,通过对厌氧铵氧化细菌生态学、基因组学和生理代谢特性的探索,人们对其微生物学机制已经有了较多的认识:厌氧铵氧化细菌通过亚硝酸盐还原酶将亚硝酸根离子还原为一氧化氮,进而与铵离子结合在联氨合成酶的作用下生成联氨,最后通过联氨氧化酶的催化产生终产物氮气。同时,对参与这些过程的关键酶及其功能基因的认识有助于选择新的分子标记,从而为研究厌氧铵氧化细菌的多样性和分子生态学特征提供新的工具,以弥补16S rRNA基因特异性相对较低且难以与生态功能关联等方面的不足。对目前已知的参与厌氧铵氧化过程的3种关键酶的研究历程和现状进行了评述,并总结了利用3种功能基因进行厌氧铵氧化细菌生态学研究的最新进展。  相似文献   

11.
The feasibility of an anaerobic ammonium oxidation (anammox) process combined with a cell-immobilization technique for autotrophic nitrogen removal was investigated. Anammox biomass was cultivated from local activated sludge and achieved significant anammox activity in 6 months. The development of a mature anammox biomass was confirmed by fluorescence in situ hybridization (FISH) analysis and off-line activity measurements. The abundance fraction of the anammox bacteria determined by FISH analysis was estimated by software. The anaerobic ammonia oxidizers occupied almost half of the total cells. Additionally, the anammox biomass was granulated as spherical gel beads of 3-4 mm in diameter by using a cell-immobilization technique. The nitrogen removal activity was proved to be successfully retained in the beads, with about 80% of nitrogenous compounds (NH(4) (+), NO(2) (- )and total nitrogen) removed after 48 h. These results offer a promising technique for the preservation of anammox microorganisms, the protection of them against the unfavorable surroundings, and the prevention of biomass washout towards the implementation of sustainable nitrogen elimination biotechnology. This is the first report on the immobilization of anammox biomass as gel beads.  相似文献   

12.
    
The recently developed denitrifying ammonium oxidation (DEAMOX) process combines the anammox reaction with autotrophic denitrifying conditions using sulfide as an electron donor for the production of nitrite from nitrate within an anaerobic biofilm. This paper compares a quasisteady-state performance of this process for treatment of baker's yeast wastewater under intermittent and continuous feeding and increasing nitrogen loading rate (NLR) from 300 till 858 mg N/L/d. The average total nitrogen removal slightly decreased on increasing the NLR: from 86 to 79% (intermittent feeding) and from 87 to 84% (continuous feeding). The better performance under continuous feeding was due to a more complete nitrate removal in the former case whereas the ammonia removal was similar for both feeding regimes under the comparable NLR. A possible explanation can be that, during continuous feeding (simultaneous supply of nitrate and sulfide), there were less mass transfer limitations for sulfide oxidizing denitrifiers presumably located in the outer layer of sludge aggregates. On the contrary, the ammonia oxidisers presumably located inside the aggregates apparently suffered from nitrite mass transfer limitations under both the feedings. The paper further describes some characteristics of the DEAMOX sludge.  相似文献   

13.
A pilot plant involving a nitritation-anammox process was operated for treating digester supernatant. In the preceding nitritation process, ammonium-oxidizing bacteria were immobilized in gel carriers, and the growth of nitrite-oxidizing bacteria was suppressed by heat-shock treatment. For the following anammox process, in order to maintain the anammox biomass in the reactor, a novel process using anammox bacteria entrapped in gel carriers was also developed. The nitritation performance was stable, and the average nitrogen loading and nitritation rates were 3.0 and 1.7 kg N m−3 d−1, respectively. In the nitritation process, nitrate production was completely suppressed. For the anammox process, the startup time was about two months. Stable nitrogen removal was achieved, and an average nitrogen conversion rate of 5.0 kg N m−3 d−1 was obtained. Since the anammox bacteria were entrapped in gel carriers, stable nitrogen removal performance was attained even at an influent suspended solids concentration of 1500 mg L−1.  相似文献   

14.
Anammox process has attracted considerable attention in the recent years as an alternative to conventional nitrogen removal technologies. In this study, a column type reactor using a novel net type acrylic fiber (Biofix) support material was used for anammox treatment. The Biofix reactor was operated at a temperature of 25°C (peak summer temperature, 31.5°C). During more than 340 days of operation for synthetic wastewater treatment, the nitrogen loading rates of the reactor were increased to 3.6 kg-N/m3/d with TN removal efficiencies reaching 81.3%. When the reactor was used for raw anaerobic sludge digester liquor treatment, an average TN removal efficiency of 72% was obtained with highest removal efficiency of 81.6% at a nitrogen loading rate of 2.2 kg-N/m3/d. Results of extracellular polymeric substances (EPS) quantification revealed that protein was the most abundant component in the granular sludge and was found to be almost twice than that in the sludge attached to the biomass carriers. The anammox granules in the Biofix reactor illustrated a dense morphology substantiated by scanning electron microscopy and EPS results. The results of DNA analyses indicated that the anammox strain KSU-1 might prefer relatively low nutrient levels, while the anammox strain KU2 strain might be better suited at high nutrient concentration. Other types of bacteria were also identified with the potential of consuming dissolved oxygen in the influent and facilitating survival of anammox bacteria under aerobic conditions.  相似文献   

15.
Ma Y  Hira D  Li Z  Chen C  Furukawa K 《Bioresource technology》2011,102(12):6650-6656
The anaerobic ammonium oxidation (anammox) process has attracted considerable attention in recent years as an alternative to conventional nitrogen removal technologies. In this study, an innovative hybrid reactor combining fluidized and fixed beds for anammox treatment was developed. The fluidized bed was mechanically stirred and the gaseous product could be rapidly released from the anammox sludge to prevent washout of the sludge caused by floatation. The fixed bed comprising a non-woven biomass carrier could efficiently catch sludge to reduce washout. During the operation, nitrogen loading rates to the reactor were increased to 27.3 kg N/m3/d, with total nitrogen removal efficiencies of 75%. The biomass concentration in the fluidized bed reached 26-g VSS/L. Anammox granules were observed in the reactors, with settling velocities and sludge volumetric index of 27.3 ± 6.5 m/h and 23 mL/g, respectively. Quantification of extracellular polymeric substances revealed the anammox granules contained a significant amount of extracellular proteins.  相似文献   

16.
17.
Anammox treatment of high-salinity wastewater at ambient temperature   总被引:4,自引:0,他引:4  
  相似文献   

18.
The existence of anaerobic ammonia-oxidizing (anammox) bacteria was postulated in the late 1970s. Approximately 20 years later, these lithotrophic members of the nitrogen cycle were identified as deep-branching members of the planctomycetes. Recently, full-scale implementation of biological deammonification was successfully achieved in the DEMON reactor at the wastewater treatment plant in Strass, Austria. The sludge of this reactor contains red granules and brownish flocs that can be physically separated. The two fractions yielded different banding patterns in denaturing gradient gel electrophoresis of PCR products obtained with primer sets targeting the 16S rRNA genes of planctomycetes. Comparative analysis of partial sequences of almost full-length 16S rRNA gene clones obtained from the granules and flocs confirms the differences in the community composition of the two fractions. The sequences retrieved from the red granules were 93% similar to those of Candidatus Brocadia anammoxidans, a bacterium known to catalyze the anaerobic ammonia oxidation.  相似文献   

19.
    
In this study sludge wash-out was evaluated as a strategy to start-up the Anammox process in order to establish it in a shorter period of time. Sludge from a domestic wastewater treatment plant (WTP) was used to seed two (RI and RII) anaerobic sequencing batch reactors (ASBR). During the start-up period RI was operated as a continuous stirred tank reactor (CSTR) using a dilution rate of 0.2 d−1, which promoted the sludge wash-out. After this period, the remaining sludge was retained in the reactor. The reactor RII was operated as an ASBR throughout the study period with a high cell retention. The performance of the two reactors in terms of nitrogen removal was compared over a period of 380 days. During the last RI operation phase the specific nitrogen removal rate increased exponentially, attaining values of 85 mg N/g TSS d. However, a rate of 190 mg N/g TSS d in the batch test under optimal conditions was achieved. The specific nitrogen removal rate remained almost constant for RII with a mean value of 6 mg N/g TSS d being observed during the operation period. The rate for the RII batch test was 20 mg N/g TSS d. These results confirm that the higher total suspended solids (TSS) in RII (reactor with high cell retention) was not effective in terms of N removal improvement. Anammox-like bacteria were found using fluorescence in situ hybridization (FISH) in reactor RI after 225 days and a new Anammox species was identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号