首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
植物叶片衰老过程中的基因表达与调控   总被引:2,自引:0,他引:2  
姚真  高燕萍  杨金水 《遗传》1999,21(4):63-65
衰老是一种器官或组织逐步走向功能衰退和死亡的变化过程〔1〕。它除了代表器官或组织生命周期的终结之外,在发育生物学上也有着重要的意义。叶片的衰老是植物的一个重要发育阶段。在这段时期内,植物在成熟叶片内积累的物质,包括大量的氮、碳有机化合物和矿物质,将被分解并运送至植物其它生长旺盛的部分,其中大部分被转移到种子内,为下一代的生长做好准备〔11〕。对于产生种子的作物,包括绝大多数农作物,这种转移使营养重新分配,对植株保持正常的生长发育与繁殖是十分必要的〔3〕。衰老过程中,叶片细胞在组成成分上有很大的变…  相似文献   

2.
3.
杨同文  李成伟 《植物学报》2014,49(6):729-737
叶片是植物重要的光合器官, 它的衰老由外界环境刺激和内源发育信号所启动, 复杂的基因调控网络参与衰老过程的精确调控。最新研究表明, 植物通过对基因表达的重编程, 在表观遗传水平上调节着叶片衰老过程。该文简要介绍了表观遗传的分子机制, 在此基础上重点综述了组蛋白修饰、染色质重塑、DNA甲基化及小RNAs途径对叶片衰老调控的最新研究进展, 同时讨论了该领域存在的问题和未来研究方向。  相似文献   

4.
植物金属蛋白酶Ft SH基因家族在拟南芥(Arabidopsis thaliana)中有12个成员,目前各基因的功能还不清楚。该文利用细胞生物学和遗传学方法初步分析了拟南芥FtSH4在叶片衰老中的功能。ftsh4-4突变体叶片中H_2O_2含量及细胞死亡率增加,叶绿素含量降低;此外,突变体中过氧化物酶基因表达上调,过氧化物酶活性增加,出现早衰表型。外源抗氧化剂As A、内源和外源生长素能够通过降低ftsh4-4体内H_2O_2含量、过氧化物酶基因的表达及过氧化物酶活性,恢复ftsh4-4叶片的衰老表型。ftsh4-4突变体中生长素响应因子基因ARF2和ARF7上调表达,外源生长素和抗氧化剂能够降低ARF2和ARF7的表达,并且ARF2突变能够降低ftsh4-4的H_2O_2含量并恢复其早衰表型。以上结果表明,FtSH4基因通过生长素与活性氧在调控植物叶片衰老中起重要作用。  相似文献   

5.
陈烨  刘平丽 《西北植物学报》2023,43(6):1068-1080
植物叶片衰老是一个非常重要的发育过程,涉及大分子的有序分解从而将营养物质从叶片转移到其他器官,对植物的生存和适应至关重要。叶片衰老主要受植物的发育调控,但同时也受内部和外部环境因素的影响,涉及高度复杂的基因调控网络和多层级的调控。近年来的研究表明表观遗传是调控植物叶片衰老的一种重要调控方式。该研究综述了植物叶片衰老过程中的表观遗传调控机制,包括组蛋白修饰、DNA甲基化、ATP依赖的染色质重塑和非编码RNA介导的调控,并对该领域今后的发展方向进行了展望。  相似文献   

6.
植物衰老是植物细胞生长发育的最后一个阶段,其启动的早晚对植物生物量和品质的形成有很大影响。叶片衰老是植物衰老的主要形式,受到内外环境因素的诱导,并被多种转录因子介导的信号传导途径所调控。对叶片衰老调控机制的研究一直是植物衰老研究中的重点。Whirly蛋白作为一类广泛存于植物中的特异转录因子小家族,能与单链DNA分子结合,双定位于细胞器(线粒体或叶绿体)与细胞核中,在植物细胞核和细胞器中发挥多种功能,参与对植物叶片衰老的调控。本文概述了植物Whirly蛋白的结构和定位,重点阐述了Whirly蛋白的功能与细胞衰老关系及其对叶片衰老调节机理的研究进展等,并对未来的研究方向进行了展望。  相似文献   

7.
植物叶片衰老过程中基因的表达与调控   总被引:6,自引:0,他引:6  
从衰老相关基因的分离、克隆、表达、调控及叶片衰老延缓几个方面,介绍叶片衰老过程中基因表达调控的研究进展。  相似文献   

8.
植物叶片的衰老   总被引:91,自引:1,他引:91  
1980年美国著名植物生理学家K.V.Thimann主编了《植物的衰老》一书,全书共分十章。分别介绍了整体植物和种子、叶、花、果实、真菌衰老方面的知识。综述了近一、二十年来研究植物衰老的文献,是一本值得推荐的专著。该书对衰老(Senescence或译为老化)所下的定义是:“导致自然死亡的一系列恶化过程”。一个生物如植物(一年或多年生)、动物或人的个体的某个器官,生命后期皆会出现衰老现象,最后终结于死亡。衰老和死亡是生物的必然终结,无法避免。但如能认识衰老的原因,推迟衰老的进程则是可能的。就植物叶片的衰老来说,当前在几种重要的农作物如水稻、小麦、棉花、油菜的某些推广品种中,生长后期皆出现不同程  相似文献   

9.
植物叶片衰老与氧化胁迫   总被引:39,自引:0,他引:39  
叶片衰老是叶片生长发育进程中的最后阶段,与活性氧伤害有着密切的关系。介绍了植物叶片衰老过程中活性氧产生及清除系统的变化,讨论了对水分胁迫与氧化胁迫的交叉抗性,并对下一步的研究作出了展望  相似文献   

10.
植物叶片衰老与氧化胁迫   总被引:1,自引:0,他引:1  
叶片衰老是叶片生长发育进程中的最后阶段,与活性氧伤害有着密切的关系。介绍了植物叶片衰老过程中活性氧产生及清除系统的变化,讨论了对水分胁迫与氧化胁迫的交叉抗性,并对下一步的研究作出了展望。  相似文献   

11.
植物衰老的分子基础与调控   总被引:8,自引:1,他引:8  
综述了植物衰老过程中的基因表达的上调和下调两种趋势,以及目前延缓植物衰老的调控手段。  相似文献   

12.
李林川  瞿礼嘉 《植物学报》2006,23(5):459-465
叶片(包括子叶)是茎端分生组织产生的第一类侧生器官, 在植物发育中具有重要地位。早期叶片发育包括三个主要过程: 叶原基的起始, 叶片腹背性的建立和叶片的延展。大量证据表明叶片发育受到体内遗传机制和体外环境因子的双重调节。植物激素, 尤其是生长素在协调体内外调节机制中起着不可或缺的作用。生长素的稳态调控、极性运输和信号转导影响叶片发育的全过程。本文着重介绍生长素在叶片生长发育和形态建成中的调控作用, 试图了解复杂叶片发育调控网络。  相似文献   

13.
大豆microRNA基因GmMIR160A负调控植物叶片衰老进程   总被引:1,自引:0,他引:1  
叶片衰老是受内外多种因子影响的遗传发育进程。生长素、细胞分裂素和乙烯等多种植物激素是调控叶片衰老的重要内部因子,它们通过长或短距离运输形成叶片组织内特定的区域分布和浓度梯度,从而直接或间接参与植物叶片衰老过程。分子遗传学表明,细胞分裂素和乙烯分别是叶片衰老的抑制子和正调节子,而生长素如何参与叶片衰老的分子机制目前还不清晰。植物体内成熟小分子RNA由小RNA基因转录并通过特定酶加工形成的21~23bp的双链RNA分子。这些小分子通过不完全配对方式抑制其靶基因转录和/或表达,参与植物生长发育多个过程,然而这类小RNA分子如何调控植物叶片衰老发育过程目前则还鲜有报告。大豆是重要的油料作物,具有典型的单次结实性衰老特征。研究大豆叶片衰老具有重要的科学意义和深远的应用价值。该文采用实时荧光定量PCR(qPCR)技术分析大豆(Glycine max)micro RNA基因GmMIR160A的表达模式,发现大豆第一复叶中GmMIR160A表达受外源生长素和黑暗处理的诱导,暗示该基因是生长素快速响应的叶片衰老相关基因。为进一步探究GmMIR160A在大豆叶片发育中的功能,构建了肾上腺皮质激素(Glucocorticoid,GR)类似物地塞米松(Dexamethasone,DEX)诱导表达GmMIR160A双元表达载体并通过农杆菌介导的子叶节方法转化野生型大豆。通过抗性筛选和基因组PCR鉴定并结合表型分析,共获得了4株诱导表达的稳定遗传转基因植株(株系OX-3、OX-5、OX-7和OX-8)。GmMIR160A过表达植株根、茎、叶、花和果实在形态学上与野生型相比无显著差异,但叶片的叶绿素含量增加、最大光量子效率(Fv/Fm)增强。进一步分子分析发现,转基因大豆叶片中GmARFs和衰老标记基因(GmCYSP1)表达明显下降,表明大豆Gma-miR160通过抑制靶基因GmARFs的表达来负调控植物叶片的衰老进程。该文揭示了生长素通过小分子RNA调控叶片发育一条新途径,为研究植物激素调控植物叶片衰老提供了新的思路。  相似文献   

14.
生长素调控植物气孔发育的研究进展   总被引:2,自引:0,他引:2  
气孔是分布于植物表皮由保卫细胞围成的小孔, 是植物体与外界环境进行水分和气体交换的重要通道, 通过影响光合作用、蒸腾作用及一系列生物学过程来促进植物适应环境的变化。生长素是最早被发现的植物激素, 在植物生长发育中发挥重要作用。近年来的研究表明, 生长素通过载体蛋白-TIR1/AFB受体-AUXIN/IAA-ARFs信号通路, 调控STOMAGEN的表达; 之后, 经STOMAGEN-类LRR受体蛋白激酶ERf-MAPKs级联反应激酶-SPCH转录因子信号通路, 启动气孔的发育进程。EPF1、EPF2和类LRR受体蛋白激酶TMM不是该过程的必需元件。生长素对气孔的调控受光信号影响, 光信号通路组分E3泛素连接酶COP1位于MAPKs激酶的上游, 参与气孔的发育调控。  相似文献   

15.
生长素调控植物株型形成的研究进展   总被引:15,自引:1,他引:15  
高等植物通过调节顶端分生组织和侧生分生组织的活性建立地上株型系统,分生组织的活性受环境信号、发育阶段和遗传因素的综合调控,植物激素参与这些信号的整合。顶端优势是植物分枝调控的核心问题,而生长素对顶端优势的形成和维持发挥关键作用。本文综述了近几年与植物地上部分株型形成相关的生长素合成代谢、极性运输及信号转导领域的研究进展,并提出了展望。  相似文献   

16.
高等植物通过调节顶端分生组织和侧生分生组织的活性建立地上株型系统, 分生组织的活性受环境信号、发育阶段和遗传因素的综合调控, 植物激素参与这些信号的整合。顶端优势是植物分枝调控的核心问题, 而生长素对顶端优势的形成和维持发挥关键作用。本文综述了近几年与植物地上部分株型形成相关的生长素合成代谢、极性运输及信号转导领域的研究进展, 并提出了展望。  相似文献   

17.
叶片衰老是植物生长发育的最后环节,其对物质的循环再利用和种子的形成过程具有重要意义。植物叶片衰老是一个多因素共同影响、多机制协同调节的复杂生理过程。该文从环境因子和内部因素两个方面对植物叶片衰老的影响因素进行了综述。  相似文献   

18.
生长素响应因子(auxin response factors,ARFs)通过调节下游靶基因广泛参与植物生长发育过程,但ARFs如何调控植物叶片衰老的分子机制还不清楚。该文首先利用实时荧光定量PCR(q PCR)技术,分析大豆生长素响应基因Gm ARF16在叶片自然衰老、人工黑暗诱导衰老、外源植物生长素IAA处理条件下的表达模式,结果表明,该基因与叶片衰老调控密切相关,并且属于生长素的原初响应基因。为了进一步验证Gm ARF16基因的功能,采用农杆菌转化方法分别获得基因敲减(Gm ARF16-RNAi)和抗降解表达(m Gm ARF16)的转基因大豆植株。与非转基因对照相比,Gm ARF16-RNAi转基因大豆植株的叶片叶绿素含量和最大光量子效率(Fv/Fm)显著提高,叶片衰老标记基因(Gm CYSP1)的表达受到抑制,而m Gm ARF16转基因大豆植株则呈现出与Gm ARF16-RNAi转基因大豆植株相反的叶片生理表型。结果表明大豆生长素响应因子Gm ARF16正调节叶片的衰老进程。该研究表明,Gm ARF16在植物生长发育进程中发挥着重要作用。  相似文献   

19.
植物生长素极性运输调控机理的研究进展   总被引:5,自引:2,他引:5  
李俊华  种康 《植物学通报》2006,23(5):466-477
生长素极性运输特异地调控植物器官发生、发育和向性反应等生理过程。本文综述和分析了生长素极性运输的调控机制。分子遗传和生理学研究证明极性运输这一过程是由生长素输入载体和输出载体活性控制的。小G蛋白ARF附属蛋白GEF和GAP分别调控输出载体(PINI)和输入载体(AUX1)的定位和活性。并影响高尔基体等介导的细胞囊泡运输系统,小G蛋白ROP也参与输出载体PIN2活性的调节。本文基于作者的研究工作提出小G蛋白在调控生长素极性运输中的可能作用模式。  相似文献   

20.
植物根系是汲取水分、营养的重要器官,而侧根是植物根系重要的组成部分。生长素是调控侧根生长发育的核心因子。该文综述了生长素信号在直根系模式植物拟南芥以及须根系模式作物水稻中侧根发育调控中的研究进展,对生长素信号调控侧根起始模型、Aux/IAA介导的生长素信号对植物侧根发育调控这两个方面进行了阐述,并对拟南芥与水稻的侧根发育进行比较,最后对该研究领域进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号