首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gene evolution has long been thought to be primarily driven by duplication and rearrangement mechanisms. However, every evolutionary lineage harbours orphan genes that lack homologues in other lineages and whose evolutionary origin is only poorly understood. Orphan genes might arise from duplication and rearrangement processes followed by fast divergence; however, de novo evolution out of non-coding genomic regions is emerging as an important additional mechanism. This process appears to provide raw material continuously for the evolution of new gene functions, which can become relevant for lineage-specific adaptations.  相似文献   

2.
3.
Orphan genes are genetic innovations that lack homologs in other lineages. Orphan genes can rapidly originate and become substantially functional, yet the mechanisms underlying their origins are still largely unknown in plants. Here, we investigated the origin of orphan genes in the Oryza sativa ssp. japonica “Nipponbare” genome using genome‐wide comparisons with 10 closely related Oryza species. We identified a total of 37 orphan genes in the Nipponbare genome that show short sequence lengths, elevated GC content, and absence of introns. Interestingly, half of the identified orphan genes originated by way of a distinctive mechanism that involved the generation of new coding sequences through independent and rapid divergence within the inserted transposable element. Our results provide valuable insight into genetic innovations in the model rice genome that formed on a very short timescale.  相似文献   

4.
Cai J  Zhao R  Jiang H  Wang W 《Genetics》2008,179(1):487-496
Origination of new genes is an important mechanism generating genetic novelties during the evolution of an organism. Processes of creating new genes using preexisting genes as the raw materials are well characterized, such as exon shuffling, gene duplication, retroposition, gene fusion, and fission. However, the process of how a new gene is de novo created from noncoding sequence is largely unknown. On the basis of genome comparison among yeast species, we have identified a new de novo protein-coding gene, BSC4 in Saccharomyces cerevisiae. The BSC4 gene has an open reading frame (ORF) encoding a 132-amino-acid-long peptide, while there is no homologous ORF in all the sequenced genomes of other fungal species, including its closely related species such as S. paradoxus and S. mikatae. The functional protein-coding feature of the BSC4 gene in S. cerevisiae is supported by population genetics, expression, proteomics, and synthetic lethal data. The evidence suggests that BSC4 may be involved in the DNA repair pathway during the stationary phase of S. cerevisiae and contribute to the robustness of S. cerevisiae, when shifted to a nutrient-poor environment. Because the corresponding noncoding sequences in S. paradoxus, S. mikatae, and S. bayanus also transcribe, we propose that a new de novo protein-coding gene may have evolved from a previously expressed noncoding sequence.  相似文献   

5.
6.
The vertebrate gonad develops from the intermediate mesoderm as an initially bipotential organ anlage, the genital ridge. In mammals, Sry acts as a genetic switch towards testis development. Sox9 has been shown to act downstream of Sry in testis development, while Dax1 appears to counteract Sry. Few more genes have been implicated in early gonad development. However, the genetic networks controlling early differentiation events in testis and ovary are still far from being understood. In order to provide a broader basis for the molecular analysis of gonad development, high-throughput gene expression analysis was utilized to identify genes specifically expressed in the gonad. In total, among 138 genes isolated which showed tissue specific expression in the embryo, 79 were detected in the developing gonad or sex ducts. Twenty-seven have not been functionally described before, while 40 represent known genes and 12 are putative mouse orthologues. Forty-five of the latter two groups (86%) have not been described previously in the fetal gonad. In addition, 21 of the gonad specific genes showed sex-dimorphic expression suggesting a role in sex determination and/or gonad differentiation. Eighteen of the latter (86%) have not been described previously in the fetal gonad. In total we provide new data on 72 genes which may play a role in gonad or sex duct development and/or sex determination. Thus we have generated a large gene resource for the investigation of these processes, and demonstrate the suitability of high-throughput gene expression screening for the genetic analysis of organogenesis.  相似文献   

7.
Yang Z  Huang J 《FEBS letters》2011,(4):641-644
The origin of new genes is critical for organisms adapting to new niches. Here, we present evidence for a recent de novo origin of at least 13 protein-coding genes in the genome of Plasmodium vivax. Although recently de novo originated genes have often been suggested to be initially intronless, five of the genes identified in our analysis contain introns in their coding regions. Further investigations revealed that these introns likely evolved from previously intergenic regions together with the coding sequences. We discuss the potential mechanisms for intron formation in these genes and propose that intronization be considered in the formation of de novo originated genes.  相似文献   

8.
Zhang Y  Jiang WK  Gao LZ 《PloS one》2011,6(12):e28073
The origin and evolution of microRNA (miRNA) genes, which are of significance in tuning and buffering gene expressions in a number of critical cellular processes, have long attracted evolutionary biologists. However, genome-wide perspectives on their origins, potential mechanisms of their de novo generation and subsequent evolution remain largely unsolved in flowering plants. Here, genome-wide analyses of Oryza sativa and Arabidopsis thaliana revealed apparently divergent patterns of miRNA gene origins. A large proportion of miRNA genes in O. sativa were TE-related and MITE-related miRNAs in particular, whereas the fraction of these miRNA genes much decreased in A. thaliana. Our results show that the majority of TE-related and pseudogene-related miRNA genes have originated through inverted duplication instead of segmental or tandem duplication events. Based on the presented findings, we hypothesize and illustrate the four likely molecular mechanisms to de novo generate novel miRNA genes from TEs and pseudogenes. Our rice genome analysis demonstrates that non-MITEs and MITEs mediated inverted duplications have played different roles in de novo generating miRNA genes. It is confirmed that the previously proposed inverted duplication model may give explanations for non-MITEs mediated duplication events. However, many other miRNA genes, known from the earlier proposed model, were rather arisen from MITE transpositions into target genes to yield binding sites. We further investigated evolutionary processes spawned from de novo generated to maturely-formed miRNA genes and their regulatory systems. We found that miRNAs increase the tunability of some gene regulatory systems with low gene copy numbers. The results also suggest that gene balance effects may have largely contributed to the evolution of miRNA regulatory systems.  相似文献   

9.
中国是鼩鼱科物种十分丰富的国家,已知有12属61个物种在中国分布,并演化出多种生态适应型.本研究采用高通量测序技术对小纹背鼩鼱、云南长尾鼩鼱和蹼足鼩3个物种的心和肺组织样本进行转录组测序.其中小纹背鼩鼱和云南长尾鼩营地表生活,蹼足鼩适应半水生生活.3个物种的转录组测序一共获得20.5 Gb的Clean Data,拼接后...  相似文献   

10.
The origin and evolution of the thousands of species-specific genes with unknown functions, the so-called orphan genes, has been a mystery. Here, we have studied the rates and patterns of orphan sequence evolution, using the Rickettsia as our reference system. Of the Rickettsia conorii orphans examined in this study, 80% were found to be short gene fragments or fusions of short segments from neighboring genes. We reconstructed the putative sequences of the full-length genes from which the short orphan fragments are thought to have originated. One of the genes thus reconstructed displays weak similarity to the ankyrin-repeat protein family, an identification that is strongly supported by comparative molecular modeling. Studies of the patterns of gene fragmentation underscore the importance of short repeated sequences as targets for recombination events that result in sequence loss and the formation of short, transient open reading frames. Our analysis demonstrates that gene sequences present in the common ancestor can be inferred even in cases when no full-length open reading frame is present in any of the contemporary species. Such reconstructions support the identification of lost protein functions and hint at important lifestyle changes.  相似文献   

11.
12.
We performed a systematic review of genome‐wide gene expression datasets to identify key genes and functional modules involved in the pathogenesis of systemic lupus erythematosus (SLE) at a systems level. Genome‐wide gene expression datasets involving SLE patients were searched in Gene Expression Omnibus and ArrayExpress databases. Robust rank aggregation (RRA) analysis was used to integrate those public datasets and identify key genes associated with SLE. The weighted gene coexpression network analysis (WGCNA) was adapted to identify functional modules involved in SLE pathogenesis, and the gene ontology enrichment analysis was utilized to explore their functions. The aberrant expressions of several randomly selected key genes were further validated in SLE patients through quantitative real‐time polymerase chain reaction. Fifteen genome‐wide gene expression datasets were finally included, which involved a total of 1,778 SLE patients and 408 healthy controls. A large number of significantly upregulated or downregulated genes were identified through RRA analysis, and some of those genes were novel SLE gene signatures and their molecular roles in etiology of SLE remained vague. WGCNA further successfully identified six main functional modules involved in the pathogenesis of SLE. The most important functional module involved in SLE included 182 genes and mainly enriched in biological processes, including defense response to virus, interferon signaling pathway, and cytokine‐mediated signaling pathway. This study identifies a number of key genes and functional coexpression modules involved in SLE, which provides deepening insights into the molecular mechanism of SLE at a systems level and also provides some promising therapeutic targets.  相似文献   

13.
Begun DJ  Lindfors HA  Kern AD  Jones CD 《Genetics》2007,176(2):1131-1137
The mutational origin and subsequent evolution of de novo genes, which are hypothesized to be genes of recent origin that are not obviously related to ancestral coding sequence, are poorly understood. However, accumulating evidence suggests that such genes may often function in male reproduction. Here we use testis-derived expressed sequence tags (ESTs) from Drosophila yakuba to identify genes that have likely arisen either in D. yakuba or in the D. yakuba/D. erecta ancestor. We found several such genes, which show testis-biased expression and are often X-linked. Comparative data indicate that three of these genes have very short open reading frames, which suggests the possibility that a significant number of testis-biased de novo genes in the D. yakuba/D. erecta clade may be noncoding RNA genes. These data, along with previously published data from D. melanogaster, support the idea that many de novo Drosophila genes function in male reproduction and that a small region of the X chromosome in the melanogaster subgroup may be a hotspot for the evolution of novel testis-biased genes.  相似文献   

14.
15.
Li BQ  Zhang J  Huang T  Zhang L  Cai YD 《Biochimie》2012,94(9):1910-1917
This paper presents a new method for identifying retinoblastoma related genes by integrating gene expression profile and shortest path in a functional linkage graph. With the existing protein-protein interaction data from STRING, a weighted functional linkage graph is constructed. 119 consistently differentially expressed genes between retinoblastoma and normal retina were obtained from the overlap of two gene expression studies of retinoblastoma. Then the shortest paths between each pair of these 119 genes were determined with Dijkstra's algorithm. Finally, all the genes present on the shortest paths were extracted and ranked according to their betweenness and the 119 shortest genes with a betweenness greater than 100 and with a p-value less than 0.05 were selected for further analysis. We also identified 53 retinoblastoma related miRNAs from published miRNA array data and most of the 238 (119 consistently differentially expressed genes and 119 shortest path genes) retinoblastoma genes were shown to be target genes of these 53 miRNAs. Interestingly, the genes we identified from both the gene expression profiles and the functional protein association network included more cancer genes than did the genes identified from the gene expression profiles alone. In addition, these genes also had greater functional similarity to the reported cancer genes than did the genes identified from the gene expression profiles alone. This study shows promising results and proves the efficiency of the proposed methods.  相似文献   

16.
Hong F  Li H 《Biometrics》2006,62(2):534-544
Time-course studies of gene expression are essential in biomedical research to understand biological phenomena that evolve in a temporal fashion. We introduce a functional hierarchical model for detecting temporally differentially expressed (TDE) genes between two experimental conditions for cross-sectional designs, where the gene expression profiles are treated as functional data and modeled by basis function expansions. A Monte Carlo EM algorithm was developed for estimating both the gene-specific parameters and the hyperparameters in the second level of modeling. We use a direct posterior probability approach to bound the rate of false discovery at a pre-specified level and evaluate the methods by simulations and application to microarray time-course gene expression data on Caenorhabditis elegans developmental processes. Simulation results suggested that the procedure performs better than the two-way ANOVA in identifying TDE genes, resulting in both higher sensitivity and specificity. Genes identified from the C. elegans developmental data set show clear patterns of changes between the two experimental conditions.  相似文献   

17.
Li D  Wang M 《BioTechniques》2012,52(3):173-176
The nematode Caenorhabditis elegans is an important model animal for biological research. Currently, transgenic C. elegans strains are mainly generated by injecting DNA encoding a gene of interest, in combination with a reporter gene, into the gonad. With this approach, the interpretation of negative results, such as the failure to observe reporter expression, is frequently required. Single, selectable vectors are urgently required. Internal ribosome entry site (IRES) elements are known to bind the eukaryotic ribosomal translation initiation complex and independently promote translation initiation. Bioinformatic analysis predicted an IRES motif upstream of the start codon of the C. elegans Hsp-3 gene. While this sequence has a Y-shaped double-hairpin secondary structure characteristic of IRES elements, it was unclear if it could function as an IRES. In the present study, this predicted Hsp-3 IRES was incorporated into a bicistronic vector driven by the myo-3 promoter, which allowed co-expression of RFP and GFP genes in the muscle tissue of C. elegans and thereby demonstrated that this IRES element is functional. This vector provides a novel, powerful tool for C. elegans research.  相似文献   

18.
19.
Trehalose metabolism genes in Caenorhabditis elegans and filarial nematodes   总被引:1,自引:0,他引:1  
The sugar trehalose is claimed to be important in the physiology of nematodes where it may function in sugar transport, energy storage and protection against environmental stresses. In this study we investigated the role of trehalose metabolism in nematodes, using Caenorhabditis elegans as a model, and also identified complementary DNA clones putatively encoding genes involved in trehalose pathways in filarial nematodes. In C. elegans two putative trehalose-6-phosphate synthase (tps) genes encode the enzymes that catalyse trehalose synthesis and five putative trehalase (tre) genes encode enzymes catalysing hydrolysis of the sugar. We showed by RT-PCR or Northern analysis that each of these genes is expressed as mRNA at all stages of the C. elegans life cycle. Database searches and sequencing of expressed sequence tag clones revealed that at least one tps gene and two tre genes are expressed in the filarial nematode Brugia malayi, while one tps gene and at least one tre gene were identified for Onchocerca volvulus. We used the feeding method of RNA interference in C. elegans to knock down temporarily the expression of each of the tps and tre genes. Semiquantitative RT-PCR analysis confirmed that expression of each gene was silenced by RNA interference. We did not observe an obvious phenotype for any of the genes silenced individually but gas-chromatographic analysis showed >90% decline in trehalose levels when both tps genes were targeted simultaneously. This decline in trehalose content did not affect viability or development of the nematodes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号