共查询到20条相似文献,搜索用时 15 毫秒
1.
L-谷氨酸是世界上第一大宗氨基酸产品,广泛应用于食品医药及化工等行业。以谷氨酸高产菌谷氨酸棒杆菌(Corynebacterium glutamicum) G01为出发菌株,首先通过敲除主要副产物丙氨酸合成相关基因-丙氨酸氨基转移酶编码基因(alaT),降低了发酵副产物丙氨酸含量。其次,α-酮戊二酸节点碳流量对谷氨酸合成起重要作用,因此,采用核糖体结合位点(ribosome-binding site,RBS)序列优化降低了α-酮戊二酸脱氢酶的活性,强化了谷氨酸合成代谢流。同时通过筛选不同来源的谷氨酸脱氢酶,加强了α-酮戊二酸内源转化为谷氨酸的能力。接着,对谷氨酸转运蛋白进行理性设计,提高了谷氨酸的外排能力。最后,对基于以上策略构建的整合菌株进行了5 L发酵罐发酵优化,通过梯度升温结合分批补料策略,谷氨酸产量为(136.33±4.68) g/L,较原始菌的产量(96.53±2.32) g/L提高了41.2%;糖酸转化率为55.8%,较原始菌的44.2%提高了11.6%;且降低了副产物丙氨酸的含量。以上策略一定程度上提高了谷氨酸的产量与糖酸转化率,可为谷氨酸生产菌株的代谢改造提供参考。 相似文献
2.
3.
4.
5.
谷氨酸棒杆菌Corynebacterium glutamicum是重要的工业微生物,尤其是在氨基酸工业中,每年用于600余万t氨基酸的生物制造。近年来,谷氨酸棒杆菌代谢工程使能技术正在不断完善,不仅加快了细胞工厂的创建和优化,拓展了底物谱和产物谱,也推动了谷氨酸棒杆菌的基础研究,使谷氨酸棒杆菌成为代谢工程的理想底盘细胞。文中综述了近期针对谷氨酸棒杆菌开发的代谢工程使能技术,着重介绍了基于CRISPR的基因组编辑、基因表达调控、适应性进化和生物传感器等技术的开发和应用。 相似文献
6.
谷氨酸棒杆菌的乙醛酸循环与谷氨酸合成 总被引:10,自引:0,他引:10
为阐明谷氨酸棒杆菌的乙醛酸循环与菌体的生长以及谷氨酸合成之间的关系 ,以谷氨酸棒杆菌基因组测序用典型菌株Corynebacteriumglutamicum ATCC 130 32为出发菌株 ,构建了乙醛酸循环途径缺失的谷氨酸棒杆菌突变株Corynebacteriumglutamicum WTΔA。该菌株没有异柠檬酸裂解酶活性 ,不能在以乙酸盐为唯一碳源的基本培养基上生长。与出发菌株ATCC13032相比 ,WTΔA在以葡萄糖为唯一碳源的培养基上生长时不受影响 ,说明谷氨酸棒杆菌并不需要乙醛酸循环途径提供菌体生长所需的能量和生物合成反应所需的中间产物。但是 ,与出发菌株ATCC13032相比 ,WTΔA的谷氨酸合成能力大幅下降。 相似文献
7.
合成生物学与代谢工程 总被引:5,自引:0,他引:5
随着DNA重组技术的日趋成熟,代谢工程的理论和应用已经得到了迅速发展。合成生物学是近年来蓬勃发展的一门新兴学科,在许多领域都具有重要的应用。以下从改造细胞代谢的关键因子、代谢途径的调节和宿主细胞与代谢途径构建的关系等方面详细讨论了合成生物学的最新进展和合成生物学在代谢工程领域的应用。 相似文献
8.
L-缬氨酸作为一种支链氨基酸,广泛应用于医药和饲料等领域。本研究借助多种代谢工程策略相结合的方法,构建了生产L-缬氨酸的微生物细胞工厂,实现了L-缬氨酸的高效生产。首先,通过增强糖酵解途径、减弱副产物代谢途径相结合的方式,强化了L-缬氨酸合成前体丙酮酸的供给;其次,针对L-缬氨酸合成路径关键酶—乙酰羟酸合酶进行定点突变,提高了菌株的抗反馈抑制能力,并利用启动子工程策略,优化了路径关键酶的基因表达水平;最后,利用辅因子工程策略,改变了乙酰羟酸还原异构酶和支链氨基酸转氨酶的辅因子偏好性,由偏好NADPH转变为偏好NADH,从而提高了L-缬氨酸的合成能力。在5L发酵罐中,最优谷氨酸棒杆菌工程菌株Corynebacterium glutamicum K020的L-缬氨酸产量、得率和生产强度分别达到了110g/L、0.51g/g和2.29 g/(L·h)。 相似文献
9.
谷氨酸棒杆菌Corynebacterium glutamicum作为一般被认为具有生物安全性的一种模式工业微生物,不仅在发酵工业中成功用于大规模生产氨基酸,而且具有合成多种新型化学品的潜力。谷氨酸棒杆菌菌株在生产化合物时,经常会受到各种逆境条件的胁迫,从而降低细胞活力和生产性能。合成生物学的发展为提高谷氨酸棒杆菌的鲁棒性提供了新的技术手段。本文总结了谷氨酸棒杆菌应对发酵过程中各种胁迫的耐受机制。同时,重点介绍提高谷氨酸棒杆菌底盘细胞鲁棒性和耐受性的合成生物学新策略,包括挖掘新的抗逆元件、改造转录调控因子、利用适应性进化策略挖掘抗逆功能模块等。最后,从生物传感器、转录调控因子的筛选和设计、多种调控元件利用等方面对提高谷氨酸棒杆菌底盘细胞鲁棒性进行了展望。 相似文献
10.
L-缬氨酸是谷氨酸棒杆菌SYPS-062发酵生产L-丝氨酸的主要副产物.为减少L-缬氨酸的积累,利用基因重组技术敲除SYPS-062转氨酶B编码基因ilvE内部的987 bp核苷酸序列,构建了ilvE基因缺失突变株SYPS-062△ilvE.研究表明,重组菌ilvE基因的缺失直接导致了分支氨基酸(Val、Ile、Leu)的合成能力的降低,影响了菌体的生长,其中Ile成为生长限制性因子,在培养基中添加分支氨基酸能明显促进其生长.重组菌培养96 h,发酵液中L-缬氨酸含量低于0.5 g/L,与出发菌株相比,其生成率降低90%. 相似文献
11.
【目的】提高谷氨酸棒状杆菌(Corynebacterium glutamicum)ATCC13032厌氧条件下的丁二酸产量,并降低发酵产物中副产物的含量。【方法】以谷氨酸棒状杆菌(Corynebacterium glutamicum)ATCC13032为出发菌,首先敲除乳酸形成的关键酶乳酸脱氢酶基因(ldh),构建ldh缺失株谷氨酸棒状杆菌ATCC13032Δldh;然后以缺失株谷氨酸棒状杆菌ATCC13032Δldh为出发菌,敲除该菌的丙酮酸脱氢酶系的E1p酶基因(aceE),构建一株双缺失突变菌株谷氨酸棒状杆菌ATCC13032ΔldhΔaceE。【结果】与供试菌比较,谷氨酸棒状杆菌ATCC13032Δldh的丁二酸产量和转化率分别提高了94.9%和32%,并且主要的副产物乳酸产量由出发菌产量的63.5 g/L降低到很微量的程度。丙酮酸脱氢酶的失活并不能完全消除副产物乙酸的形成,但乙酸的产量较ATCC13032Δldh降低了37.9%,丁二酸的产量略有提高。【结论】该重组菌具有较强的丁二酸生产工业化潜力,并且该研究方法为微生物代谢育种提供参考。 相似文献
12.
莽草酸是一种芳香族中间代谢产物,也是合成抗禽流感药物磷酸奥司他韦的前体。目前,国内外莽草酸的生产主要依靠成本较高,周期较长的植物提取法。微生物发酵法合成莽草酸具有生产成本低、周期短等优势成为研究的热点。为了构建产莽草酸的重组谷氨酸棒杆菌,此次研究从基因组水平上对谷氨酸棒杆菌体内的莽草酸代谢途径进行代谢工程改造。通过阻断莽草酸分解代谢途径、解除反馈抑制以及阻断竞争性代谢途径的策略,实现了莽草酸产量的大幅提升。结果显示,所构建的重组谷氨酸棒杆菌SKA06经72 h摇瓶发酵,莽草酸产量达到7.61 g/L,相较出发菌种提升了68倍。并且,基于染色体工程的遗传改造策略克服了引入质粒带来传代不稳定、需要添加抗生素等问题,可以为莽草酸工程菌种的选育提供重要参考。 相似文献
13.
用谷氨酸棒杆菌固定化细胞可以大大提高谷氨酸的容积产量,但葡萄糖到谷氨酸的转化率仍较低(Amin Get al.Bioresourse Tech,1993,待发表).葡萄糖转化成谷氨酸的理论值是81.74%(w/w)。由于发酵中产生许多种副产物和有大量细胞生长,因此实际值要低些。这些副产物的合成和外界条件关系密切,特别是溶解氧浓度能影响谷氨酸终浓度和胞外氨基酸组成。 相似文献
14.
谷氨酸棒状杆菌是目前微生物发酵生产L-缬氨酸的主要工业菌株。文中首先在谷氨酸棒状杆菌VWB-1中敲除了alaT (丙氨酸氨基转移酶),获得突变菌株VWB-2,作为出发菌株。进而对L-缬氨酸合成途径关键酶——乙酰羟酸合酶 (ilvBN) 的调节亚基进行定点突变 (ilvBN1M13),解除L-缬氨酸对该酶的反馈抑制。然后辅助过量表达L-缬氨酸合成途径关键基因ilvBN1M13、乙酰羟酸异构酶 (ilvC)、二羟酸脱水酶 (ilvD)、支链氨基酸氨基转移酶 (ilvE),加强通往L-缬氨酸的碳代谢流,提高菌株的L-缬氨酸水平。最后,基于过量表达L-缬氨酸转运蛋白编码基因brnFE及其调控蛋白编码基因lrp1,提高细胞的L-缬氨酸转运能力。最终获得工程菌株VWB-2/pEC-XK99E-ilvBN1M13CE-lrp1-brnFE在5 L发酵罐中的L-缬氨酸产量达到461.4 mmol/L,糖酸转化率达到0.312 g/g葡萄糖。 相似文献
15.
正自从1957年Kinoshita等首次描述谷氨酸棒杆菌(Corynebacterium glutamicum)为谷氨酸产生菌[1]以来,其已成为用于氨基酸生产的主要菌株。目前,全世界每年利用谷氨酸棒杆菌生产约100万t L-谷氨酸用于食品调味剂和约45万t L-赖氨酸用作食品添加剂[2]。通过谷氨酸棒状杆菌发酵获得谷氨酸的发酵水平已较高,通过进一步优化工艺来提高产量具有较大困难[3]。 相似文献
16.
氨基酸是一类在食品、医药及化工等领域具有广泛应用的重要化合物。谷氨酸棒杆菌Corynebacterium glutamicum是生物合成氨基酸最重要的微生物菌株,其年产各类氨基酸超过百万吨。谷氨酸棒杆菌高产氨基酸除具有强大的合成代谢能力外,高效的分泌转运能力也是不可忽略的分子基础。文中综述了近年来谷氨酸棒杆菌中氨基酸分泌转运蛋白及其代谢改造的研究进展,并展望了未来发展方向,为进一步改造提升其发酵生产氨基酸的能力提供了可资借鉴的资料。 相似文献
17.
代谢工程作为通过引入外源合成途径或改造优化代谢网络,进行高附加值的天然代谢产物生物合成的技术,已经得到广泛应用。但随着目标合成产物的结构日渐复杂,构建多基因的从头合成途径造成宿主生物代谢失衡与中间产物对宿主细胞产生毒害作用等一系列问题发生的可能性也随之增加。为解决这些问题合成支架策略应运而生,合成支架将途径酶共定位以提高局部酶和代谢物的浓度,来增强代谢通量并限制中间产物与宿主细胞环境间的相互作用,成为生物催化和合成生物学研究的热点之一。尽管由核酸、蛋白质构成的合成支架策略已经应用于多种代谢物的异源合成,并取得了不同程度的成功,但合成支架的精确组装仍然是一项艰巨的任务。文中详细介绍了合成支架技术的研究现状,详细阐述了合成支架技术的原理和实例,并初步探讨了其应用前景。 相似文献
18.
碱基编辑技术结合了CRISPR/Cas系统的靶向特异性与碱基脱氨酶的催化活性,因其不产生双链DNA断裂、不需要外源DNA模板、不依赖同源重组修复,自开发以来,便受到研究者的追捧,在哺乳动物细胞、植物、微生物等领域相继得到开发与应用。为了进一步丰富碱基编辑系统在谷氨酸棒杆菌中的应用,将鼠源胞嘧啶脱氨酶(rAPOBEC1)与nCas9蛋白融合,实现了在谷氨酸棒杆菌中C到T的编辑,编辑比例较低(0-20%);在上述融合蛋白C端添加UGI蛋白,构建BE3型胞嘧啶碱基编辑器,抑制体内的DNA碱基切除修复机制,显著的提高了碱基编辑效率,使得C到T的碱基编辑效率高达90%;为了简化操作,将双质粒碱基编辑系统优化为单质粒碱基编辑系统,并显著提高转化效率;最后通过单质粒碱基编辑系统对基因组中其他位点的编辑测试,进一步证明了BE3型碱基编辑器在谷氨酸棒杆菌中的高效性,同时发现该碱基编辑器具有较宽的编辑窗口(PAM上游-11到-19位),有助于覆盖更多的基因组靶标位点,为谷氨酸棒杆菌的基因组改造提供了更多的工具选择。 相似文献
19.
谷氨酸棒杆菌是生产氨基酸、有机酸等的重要菌株,广泛应用于食品、医药领域。利用基因编辑技术对谷氨酸棒杆菌进行基因功能研究,在提高目的产物产量、发现新的基因功能等方面有重要意义。近年来,基因编辑技术发展日新月异,从基于同源重组的传统基因编辑技术到以人工核酸酶介导的基因编辑均在谷氨酸棒杆菌中得到合理应用。其中,CRISPR技术以其快速、简便、编辑效率高等优点成为现阶段研究者用于改造谷氨酸棒杆菌的主要技术,但是更为简单、高效的编辑手段依旧需要进一步研究开发,以获得优良菌株应用于工业生产中。 相似文献
20.