首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Dendritic cells (DCs) are potent inducers of T cell immunity, and autologous DC vaccination holds promise for the treatment of cancers and chronic infectious diseases. In practice, however, therapeutic vaccines of this type have had mixed success. In this article, we show that brief exposure to inhibitors of mechanistic target of rapamycin (mTOR) in DCs during the period that they are responding to TLR agonists makes them particularly potent activators of naive CD8(+) T cells and able to enhance control of B16 melanoma in a therapeutic autologous vaccination model in the mouse. The improved performance of DCs in which mTOR has been inhibited is correlated with an extended life span after activation and prolonged, increased expression of costimulatory molecules. Therapeutic autologous vaccination with DCs treated with TLR agonists plus the mTOR inhibitor rapamycin results in improved generation of Ag-specific CD8(+) T cells in vivo and improved antitumor immunity compared with that observed with DCs treated with TLR agonists alone. These findings define mTOR as a molecular target for augmenting DC survival and activation, and document a novel pharmacologic approach for enhancing the efficacy of therapeutic autologous DC vaccination.  相似文献   

2.
The mammalian target of rapamycin (mTOR) modulates immune responses and cellular proliferation. The objective of this study was to assess whether inhibition of mTOR with rapamycin modifies disease severity in two experimental murine models of house dust mite (HDM)-induced asthma. In an induction model, rapamycin was administered to BALB/c mice coincident with nasal HDM challenges for 3 weeks. In a treatment model, nasal HDM challenges were performed for 6 weeks and rapamycin treatment was administered during weeks 4 through 6. In the induction model, rapamycin significantly attenuated airway inflammation, airway hyperreactivity (AHR) and goblet cell hyperplasia. In contrast, treatment of established HDM-induced asthma with rapamycin exacerbated AHR and airway inflammation, whereas goblet cell hyperplasia was not modified. Phosphorylation of the S6 ribosomal protein, which is downstream of mTORC1, was increased after 3 weeks, but not 6 weeks of HDM-challenge. Rapamycin reduced S6 phosphorylation in HDM-challenged mice in both the induction and treatment models. Thus, the paradoxical effects of rapamycin on asthma severity paralleled the activation of mTOR signaling. Lastly, mediastinal lymph node re-stimulation experiments showed that treatment of rapamycin-naive T cells with ex vivo rapamycin decreased antigen-specific Th2 cytokine production, whereas prior exposure to in vivo rapamycin rendered T cells refractory to the suppressive effects of ex vivo rapamycin. We conclude that rapamycin had paradoxical effects on the pathogenesis of experimental HDM-induced asthma. Thus, consistent with the context-dependent effects of rapamycin on inflammation, the timing of mTOR inhibition may be an important determinant of efficacy and toxicity in HDM-induced asthma.  相似文献   

3.
The mammalian target of rapamycin (mTOR) functions in cells at least as two complexes, mTORC1 and mTORC2. Intensive studies have focused on the roles of mTOR in the regulation of cell proliferation, growth, and survival. Recently we found that rapamycin inhibits type I insulin-like growth factor (IGF-1)-stimulated lamellipodia formation and cell motility, indicating involvement of mTOR in regulating cell motility. This study was set to further elucidate the underlying mechanism. Here we show that rapamycin inhibited protein synthesis and activities of small GTPases (RhoA, Cdc42, and Rac1), crucial regulatory proteins for cell migration. Disruption of mTORC1 or mTORC2 by down-regulation of raptor or rictor, respectively, inhibited the activities of these proteins. However, only disruption of mTORC1 mimicked the effect of rapamycin, inhibiting their protein expression. Ectopic expression of rapamycin-resistant and constitutively active S6K1 partially prevented rapamycin inhibition of RhoA, Rac1, and Cdc42 expression, whereas expression of constitutively hypophosphorylated 4E-BP1 (4EBP1-5A) or down-regulation of S6K1 by RNA interference suppressed expression of the GTPases, suggesting that both mTORC1-mediated S6K1 and 4E-BP1 pathways are involved in protein synthesis of the GTPases. Expression of constitutively active RhoA, but not Cdc42 and Rac1, conferred resistance to rapamycin inhibition of IGF-1-stimulated lamellipodia formation and cell migration. The results suggest that rapamycin inhibits cell motility at least in part by down-regulation of RhoA protein expression and activity through mTORC1-mediated S6K1 and 4E-BP1-signaling pathways.  相似文献   

4.
Their eponymous morphology and unique ability to activate naive T cells are hallmark features of dendritic cells (DCs). Specific properties of the actin cytoskeleton may define both characteristics. In search for regulators that coordinate DC phenotype and function, we observed strongly increased expression of the actin-remodeling GTPases Cdc42 and Rac1 during DC development from human stem cells. Cdc42 and Rac1 are constitutively active in immature DCs, and their activity is further up-regulated by maturational stimuli such as LPS or CD40L. Activation of Rac1 is associated with its rapid recruitment into lipid rafts. Cdc42 is not recruited into rafts, but readily activated by raft-associated moieties. The functional interplay of rafts, GTPases, and cortical actin is further shown by GTPase activation and actin remodeling after pharmacological disruption of lipid rafts and by the loss of the actin-based DC morphology by transfection of dominant-negative Cdc42 and Rac1. Both Cdc42 and Rac1 also control the transport of essential immunostimulatory molecules to the DC surface. Transfection with dominant-negative GTPases led to reduced surface expression of MHC class I and CD86. Consecutively, DCs display a reduced stimulatory capacity for CD8(+) T cells, whereas MHC class II-dependent stimulation of CD4(+) T cells remains unperturbed. We conclude that Cdc42 and Rac1 signaling controls DC morphology and conditions DCs for efficient CD8(+) T cell stimulation.  相似文献   

5.
Maturing dendritic cells depend on RAGE for in vivo homing to lymph nodes   总被引:2,自引:0,他引:2  
The mobilization of dendritic cells (DCs) from peripheral tissues is critical for the establishment of T cell-dependent immune responses or tolerance, because the physical interaction of DCs with naive T cells takes place in the T cell areas of lymph nodes. The autocrine/paracrine release of the high mobility group box 1 (HMGB1) nuclear protein by DCs controls the outcome of the DC-T cell interaction, influencing the priming/Th1 polarization of naive T cells. We herein present evidence that the receptor for advanced glycation end products (RAGE), a multiligand member of the Ig superfamily of cell-surface molecules that acts as a receptor for HMGB1, plays a nonredundant role in DC homing to lymph nodes. We used noninvasive imaging by magnetic resonance and immunohistochemistry to track DCs after s.c. injection in the footpad of wild-type(+/+) or RAGE(-/-) mice. Maturing DCs expressing RAGE effectively migrated in both conditions. In contrast, RAGE(-/-) DCs failed to reach the draining popliteal lymph nodes of +/+ and -/- mice, indicating that the integrity of RAGE is required for DC mobilization. Thus the HMGB1-RAGE pathway is a checkpoint in DC maturation and function and a candidate for targeted therapies.  相似文献   

6.
We recently identified expression of the semaphorin receptor, plexin-A1, in dendritic cells (DCs); however, its function in these cells remains to be elucidated. To investigate function and maximize physiological relevance, we devised a retroviral approach to ablate plexin-A1 gene expression using small hairpin RNA (shRNA) in primary bone marrow-derived DCs. We show that plexin-A1 localizes within the cytoplasm of immature DCs, becomes membrane-associated, and is enriched at the immune synapse in mature DCs. Reducing plexin-A1 expression with shRNA greatly reduced actin polarization as well as Rho activation without affecting Rac or Cdc42 activation. A Rho inhibitor, C3, also reduced actin polarization. These changes were accompanied by the near-ablation of T cell activation. We propose a mechanism of adaptive immune regulation in which plexin-A1 controls Rho activation and actin cytoskeletal rearrangements in DCs that is associated with enhanced DC-T cell interactions.  相似文献   

7.
Cell division cycle 42 (Cdc42) is a member of the Rho guanosine triphosphatase family and has pivotal functions in actin organization, cell migration, and proliferation. To further study the molecular mechanisms of dendritic cell (DC) regulation by Cdc42, we used Cdc42-deficient DCs. Cdc42 deficiency renders DCs phenotypically mature as they up-regulate the co-stimulatory molecule CD86 from intracellular storages to the cell surface. Cdc42 knockout DCs also accumulate high amounts of invariant chain–major histocompatibility complex (MHC) class II complexes at the cell surface, which cannot efficiently present peptide antigens (Ag’s) for priming of Ag-specific CD4 T cells. Proteome analyses showed a significant reduction in lysosomal MHC class II–processing proteins, such as cathepsins, which are lost from DCs by enhanced secretion. As these effects on DCs can be mimicked by chemical actin disruption, our results propose that Cdc42 control of actin dynamics keeps DCs in an immature state, and cessation of Cdc42 activity during DC maturation facilitates secretion as well as rapid up-regulation of intracellular molecules to the cell surface.  相似文献   

8.
Mammalian target of rapamycin (mTOR) is central to the control of cell proliferation, growth, and survival in mammalian cells. Prolonged treatment with rapamycin inhibits mTOR complex 2 (mTORC2) activity, and both the mTORC1-mediated S6K1 and 4E-BP1/eIF4E pathways are essential for TORC2-mediated RhoA, Cdc42, and Rac1 expression during cell motility and F-actin reorganization. The functions of mTOR in the mouse oocyte remain unclear, however. The present study shows that rapamycin affects mTOR expression and cytoskeleton reorganization during meiotic maturation of mouse oocytes. mTOR mRNA was expressed in germinal vesicles (GV) until metaphase I (MI), and increased during metaphase II (MII). Immunostaining showed that mTOR localized around the spindle and in the cytoplasm of oocytes. Treatment of oocytes with rapamycin decreased mTOR at the RNA and protein level, and altered asymmetric division. Formation of the actin cap and the cortical granule-free domain were also disrupted after rapamycin treatment, indicating the failure of spindle migration. Injection of an anti-mTOR antibody yielded results consistent with those obtained for rapamycin treatment, further confirming the involvement of mTOR in oocyte polarity. Furthermore, rapamycin treatment reduced the mRNA expression of small GTPases (RhoA, Cdc42, and Rac1), which are crucial regulatory factors for cytoskeleton reorganization. Taken together, these results suggest that rapamycin inhibits spindle migration and asymmetric division during mouse oocyte maturation via mTOR-mediated small GTPase signaling pathways.  相似文献   

9.
Respiratory failure during Pneumocystis pneumonia is mainly a consequence of exaggerated inflammatory responses to the organism. Dendritic cells (DCs) are the most potent APCs in the lung and are key to the regulation of innate and adaptive immune responses. However, their participation in the inflammatory response directed against Pneumocystis infection has not been fully elucidated. Therefore, we studied the role of Pneumocystis carinii, as well as Saccharomyces cerevisiae, cell wall-derived beta-glucans, in DC costimulatory molecule expression. We further studied the impact of beta-glucans on subsequent T cell activation. Because cytokine secretion by DCs has recently been shown to be regulated by Fas ligand (FasL), its role in beta-glucan activation of DCs was also investigated. beta-Glucan-induced DC activation occurred in part through dectin-1 receptors. We demonstrated that DC activation by beta-glucans elicits T cell activation and polarization into a Th1 patterned response, but with the conspicuous absence of IL-12. These observations differed from LPS-driven T cell polarization, suggesting that beta-glucans and LPS signal DC activation through different mechanisms. We additionally determined that IL-1beta and TNF-alpha secretion by beta-glucan-stimulated DCs was partially regulated by Fas-FasL. This suggests that dysregulation of FasL could further enhance exuberant and prolonged cytokine production by DCs following DC-T cell interactions, further promoting lung inflammation typical of Pneumocystis pneumonia.  相似文献   

10.
Dendritic cells (DC) play a major role in the pathogenesis of graft-vs-host disease (GvHD). Directed modification of surface molecules on DC that provide instructive signals for T cells may create a tolerogenic DC phenotype that affects GvHD severity. To investigate the impact of the mammalian target of rapamycin (mTOR) inhibitor rapamycin (RAPA) on in vivo migratory capacities, tolerogenic function, and B7 superfamily surface expression on DC following allogeneic hematopoietic cell transplantation (aHCT), we generated a platform for magnetic resonance imaging and bioluminescence imaging based cell trafficking studies. Luciferase transgenic DC were labeled with superparamagnetic iron oxide nanoparticles bound to a murine IgG Ab that allowed for Fc-gammaR-mediated endocytosis. Locally injected luc(+) DC could be tracked within their anatomical context by bioluminescence imaging and magnetic resonance imaging after aHCT, based on stable intracellular localization of superparamagnetic iron oxide-IgG complexes. RAPA preconditioned DC (DC-R) displayed reduced expression of MHC class II, B7-1 (CD80), and B7-2 (CD86) but not B7-H4 whose ligation of T cells has a profound inhibitory effect on their proliferation and cytokine secretion. DC-R of recipient genotype reduced GvHD severity that is compatible with their tolerogenic phenotype. CCR5, CCR7, and CD62L expression was not affected by mTOR inhibition, which allowed for DC-R in vivo trafficking to secondary lymphoid compartments where immunregulation is required. This study is the first to delineate the impact of RAPA on DC migration and tolerogenic function after aHCT. Modification of the DC phenotype by mTOR inhibition may have therapeutic potential in an attempt to reduce GvHD following aHCT.  相似文献   

11.
Interactions between antigen-presenting dendritic cells (DCs) and T cells are essential for the induction of an immune response. However, during malaria infection, DC function is compromised and immune responses against parasite and heterologous antigens are reduced. Here, we demonstrate that malaria infection or the parasite pigment hemozoin inhibits T cell and DC interactions both in vitro and in vivo, while signal 1 intensity remains unaltered. This altered cellular behaviour is associated with the suppression of DC costimulatory activity and functional T cell responses, potentially explaining why immunity is reduced during malaria infection.  相似文献   

12.
Over the last decade, several studies have extensively reported that activated natural killer (NK) cells can kill autologous immature dendritic cells (DCs) in vitro, whereas they spare fully activated DCs. This led to the proposal that activated NK cells might select a more immunogenic subset of DCs during a protective immune response. However, there is no demonstration that autologous DC killing by NK cells is an event occurring in vivo and, consequently, the functional relevance of this killing remains elusive. Here we report that a significant decrease of CD11c(+) DCs was observed in draining lymph nodes of mice inoculated with MHC-devoid cells as NK cell targets able to induce NK cell activation. This in vivo DC editing by NK cells was perforin-dependent and it was functionally relevant, since residual lymph node DCs displayed an improved capability to induce T cell proliferation. In addition, in a model of anti-cancer vaccination, the administration of MHC-devoid cells together with tumor cells increased the number of tumor-specific CTLs and resulted in a significant increase in survival of mice upon challenge with a lethal dose of tumor cells. Depletion of NK cells or the use of perforin knockout mice strongly decreased the tumor-specific CTL expansion and its protective role against tumor cell challenge. As a whole, our data support the hypothesis that NK cell-mediated DC killing takes place in vivo and is able to promote expansion of cancer-specific CTLs. Our results also indicate that cancer vaccines could be improved by strategies aimed at activating NK cells.  相似文献   

13.
14.
Alcohol consumption inhibits accessory cell function and Ag-specific T cell responses. Myeloid dendritic cells (DCs) coordinate innate immune responses and T cell activation. In this report, we found that in vivo moderate alcohol intake (0.8 g/kg of body weight) in normal volunteers inhibited DC allostimulatory capacity. Furthermore, in vitro alcohol treatment during DC differentiation significantly reduced allostimulatory activity in a MLR using naive CD4(+) T cells, and inhibited tetanus toxoid Ag presentation by DCs. Alcohol-treated DCs showed reduced IL-12, increased IL-10 production, and a decrease in expression of the costimulatory molecules CD80 and CD86. Addition of exogenous IL-12 and IL-2, but not neutralization of IL-10, during MLR ameliorated the reduced allostimulatory capacity of alcohol-treated DCs. Naive CD4(+) T cells primed with alcohol-treated DCs showed decreased IFN-gamma production that was restored by exogenous IL-12, indicating inhibition of Th1 responses. Furthermore, CD4(+) T cells primed with alcohol-treated DCs were hyporesponsive to subsequent stimulation with the same donor-derived normal DCs, suggesting the ability of alcohol-treated DCs to induce T cell anergy. LPS-induced maturation of alcohol-treated immature DCs partially restored the reduced allostimulatory activity, whereas alcohol given only during DC maturation failed to inhibit DC functions, suggesting that alcohol primarily impairs DC differentiation rather than maturation. NFkappaB activation, a marker of DC maturation was not affected by alcohol. Taken together, alcohol both in vitro and in vivo can impair generation of Th1 immune responses via inhibition of DC differentiation and accessory cell function through mechanisms that involve decreased IL-12 induction.  相似文献   

15.
Under healthy conditions, there is a balance between tolerance to self-tissue constituents and immunity against foreign antigens. Autoimmunity diseases (AD) take place when that equilibrium is disrupted and the immune response is directed to self-antigens, leading to injury or destruction of host tissues. The mechanisms conducing to the loss of immune tolerance remain largely unknown. The recent appearance of biological therapies has contributed to significant reduction in morbidity. However, currently available therapies are associated with important side effects and work only as palliative treatments. Dendritic cells (DCs) have emerged as key players in developing and maintaining adaptive immunity due to their capacity to prime and modulate T cell function. Therefore, because DCs work as central modulators of immune tolerance, it is likely that alterations in their function can lead to the onset of autoimmune-inflammatory diseases. By modulating DC function, novel pathways in antigen-specific tolerance could be established. In this article, the possible contribution of altered DC-T cell interactions to the onset of autoimmunity are discussed. In addition, we expand on the notion that some of the functions of these cells could be relevant targets for intervening therapies aimed to restore the balance or even prevent the loss of tolerance.  相似文献   

16.
Dendritic cells (DCs) are critical in initiating immune responses by cross-priming of tumor Ags to T cells. Previous results showed that NK cells inhibited DC-mediated cross-presentation of tumor Ags both in vivo and in vitro. In this study, enhanced Ag presentation was observed in draining lymph nodes in TRAIL(-/-) and DR5(-/-) mice compared with that of wild-type mice. NK cells inhibit DC cross-priming of tumor Ags in vitro, but not direct presentation of endogenous Ags. NK cells lacking TRAIL, but not perforin, were not able to inhibit DC cross-priming of tumor Ags. DCs that lack expression of TRAIL receptor DR5 were less susceptible to NK cell-mediated inhibition of cross-priming, and cross-linking of DR5 receptor led to reduced generation of MHC class I-Ag peptide complexes, followed by attenuated cross-priming of CD8(+) T cells. In addition, key molecules involved in the TRAIL/DR5 pathway during DC/NK cell interactions were determined. In summary, these data indicate a novel alternative pathway for DC/NK cell interactions in antitumor immunity and may reflect homeostasis of both DCs and NK cells for regulation of CD8(+) T cell function in physiological conditions.  相似文献   

17.
For immune responses to take place, naive T cells have to encounter, adhere to, and be stimulated by dendritic cells (DCs). In murine lymph nodes, T cells move randomly and scan the surface of multiple DCs. The factors controlling this motility as well as its consequences remain unclear. We have monitored by video-imaging the earliest steps of the interaction between human DCs and autologous naive CD4+ T cells in the absence of exogenous Ags. Mature, but not immature, DCs were able to elicit small calcium responses in naive T cells along with cell polarization and random motility, resulting in an efficient scanning of DC surfaces by T cells. We identified CCL19 as a key factor enabling all these early T cell responses, including the occurrence of calcium transients. Because this chemokine did not influence the strength of naive T cell adhesion to DCs, enhanced LFA-1 affinity for ICAM-1 was not the main mechanism by which CCL19 increased Ag-independent calcium transients. However, concomitantly to T cell motility, CCL19 augmented the frequency of T cell responses to rare anti-CD3/CD28-coated beads, used as surrogate APCs. We thus propose a new role for CCL19 in humans: by conditioning T cells into a motile DC-scanning state, this chemokine promotes Ag-independent responses and increases the probability of cognate MHC-peptide encounter.  相似文献   

18.
The Wiskott-Aldrich syndrome protein (WASp) is a key regulator of actin polimerization in hematopoietic cells. Mutations in WASp cause a severe immunodeficiency characterized by defective initiation of primary immune response and autoimmunity. The contribution of altered dendritic cells (DCs) functions to the disease pathogenesis has not been fully elucidated. In this study, we show that conventional DCs develop normally in WASp-deficient mice. However, Ag targeting to lymphoid organ-resident DCs via anti-DEC205 results in impaired naive CD8(+) T cell activation, especially at low Ag doses. Altered trafficking of Ag-bearing DCs to lymph nodes (LNs) accounts only partially for defective priming because correction of DCs migration does not rescue T cell activation. In vitro and in vivo imaging of DC-T cell interactions in LNs showed that cytoskeletal alterations in WASp null DCs causes a reduction in the ability to form and stabilize conjugates with naive CD8(+) T lymphocytes both in vitro and in vivo. These data indicate that WASp expression in DCs regulates both the ability to traffic to secondary lymphoid organs and to activate naive T cells in LNs.  相似文献   

19.
An emerging concept is that different types of dendritic cells (DCs) initiate different immune outcomes, such as tolerance vs inflammation. In this study, we have characterized the DCs from the lung draining lymph nodes of mice immunized for allergic airway inflammation or tolerance and examined their interactions with CD4(+) T cells. The DC population derived from tolerized mice was predominantly CD11c(+), B220(+), Gr-1(+), CD11b(-), and MHC class II(low), which resembled plasmacytoid-type DCs whereas DCs from the inflammatory condition were largely CD11c(+), B220(-), Gr-1(-), CD11b(+), and MHC class II(high) resembling myeloid-type DCs. The DCs from the tolerogenic condition were poor inducers of T cell proliferation. DCs from both conditions induced T cell IL-4 production but the T cells cultured with tolerogenic DCs were unresponsive to IL-4 as indicated by inhibition of STAT6 activation and expression of growth factor-independent 1, which has been recently shown to be important for STAT6-activated Th2 cell expansion. Our data suggest that airway tolerance vs inflammation is determined by the DC phenotype in lung draining lymph nodes.  相似文献   

20.
In vitro manipulated dendritic cells (DC) have increasingly been used as a promising vaccine formulation against cancer and infectious disease. However, improved understanding of the immune mechanisms is needed for the development of safe and efficacious mucosal DC immunization. We have developed a murine model of respiratory mucosal immunization by using a genetically manipulated DC vaccine. Within 24 h of intranasal delivery, the majority of vaccine DCs migrated to the lung mucosa and draining lymph nodes and elicited a significant level of T cells capable of IFN-gamma secretion and CTL in the airway lumen as well as substantial T cell responses in the spleen. And such T cell responses were associated with enhanced protection against respiratory mucosal intracellular bacterial challenge. In comparison, parenteral i.m. DC immunization did not elicit marked airway luminal T cell responses and immune protection regardless of strong systemic T cell activation. Although repeated mucosal DC delivery boosted Ag-specific T cells in the airway lumen, added benefits to CD8 T cell activation and immune protection were not observed. By using MHC-deficient vaccine DCs, we further demonstrated that mucosal DC immunization-mediated CD8 and CD4 T cell activation does not require endogenous DCs. By using IL-12-deficient vaccine DCs, we also observed that IL-12(-/-) DCs failed to migrate to the lymph nodes but remained capable of T cell activation. Our observations indicate that mucosal delivery of vaccine DCs represents an effective approach to enhance mucosal T cell immunity, which may operate independent of vaccine IL-12 and endogenous DCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号