首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The corneal epithelium is composed of stratified squamous epithelial cells on the outer surface of the eye, which acts as a protective barrier and is critical for clear and stable vision. Its continuous renewal or wound healing depends on the proliferation and differentiation of limbal stem cells (LSCs), a cell population that resides at the limbus in a highly regulated niche. Dysfunction of LSCs or their niche can cause limbal stem cell deficiency, a disease that is manifested by failed epithelial wound healing or even blindness. Nevertheless, compared to stem cells in other tissues, little is known about the LSCs and their niche. With the advent of single-cell RNA sequencing, our understanding of LSC characteristics and their microenvironment has grown considerably. In this review, we summarized the current findings from single-cell studies in the field of cornea research and focused on important advancements driven by this technology, including the heterogeneity of the LSC population, novel LSC markers and regulation of the LSC niche, which will provide a reference for clinical issues such as corneal epithelial wound healing, ocular surface reconstruction and interventions for related diseases.  相似文献   

3.
4.
5.
6.
《遗传学报》2020,47(4):175-186
Drosophila has been extensively used to model the human blood-immune system,as both systems share many developmental and immune response mechanisms.However,while many human blood cell types have been identified,only three were found in flies:plasmatocytes,crystal cells and lamellocytes.To better understand the complexity of fly blood system,we used single-cell RNA sequencing technology to generate co mprehensive gene expression profiles for Drosophila circulating blood cells.In addition to the known cell types,we identified two new Drosophila blood cell types:thanacytes and primocytes.Thanacytes,which express many stimulus response genes,are involved in distinct responses to different types of bacteria.Primocytes,which express cell fate commitment and signaling genes,appear to be involved in keeping stem cells in the circulating blood.Furthermore,our data revealed four novel plasmatocyte subtypes(Ppn+,CAH7~+,Lsp~+ and reservoir plasmatocytes),each with unique molecular identities and distinct predicted functions.We also identified cross-species markers from Drosophila hemocytes to human blood cells.Our analysis unveiled a more complex Drosophila blood system and broadened the scope of using Drosophila to model human blood system in development and disease.  相似文献   

7.
This study aimed to characterize the cells and gene expression landscape in atrial septal defect (ASD). We performed single-cell RNA sequencing of cells derived from cardiac tissue of an ASD patient. Unsupervised clustering analysis was performed to identify different cell populations, followed by the investigation of the cellular crosstalk by analysing ligand-receptor interactions across cell types. Finally, differences between ASD and normal samples for all cell types were further investigated. An expression matrix of 18,411 genes in 6487 cells was obtained and used in this analysis. Five cell types, including cardiomyocytes, endothelial cells, smooth muscle cells, fibroblasts and macrophages were identified. ASD showed a decreased proportion of cardiomyocytes and an increased proportion of fibroblasts. There was more cellular crosstalk among cardiomyocytes, fibroblasts and macrophages, especially between fibroblast and macrophage. For all cell types, the majority of the DEGs were downregulated in ASD samples. For cardiomyocytes, there were 199 DEGs (42 upregulated and 157 downregulated) between ASD and normal samples. PPI analysis showed that cardiomyocyte marker gene FABP4 interacted with FOS, while FOS showed interaction with NPPA. Cell trajectory analysis showed that FABP4, FOS, and NPPA showed different expression changes along the pseudotime trajectory. Our results showed that single-cell RNA sequencing provides a powerful tool to study DEG profiles in the cell subpopulations of interest at the single-cell level. These findings enhance the understanding of the underlying mechanisms of ASD at both the cellular and molecular level and highlight potential targets for the treatment of ASD.  相似文献   

8.
9.
10.
Stem cells(SCs) with their self-renewal and pluripotent differentiation potential,show great promise for therapeutic applications to some refractory diseases such as stroke, Parkinsonism, myocardial infarction, and diabetes. Furthermore, as seed cells in tissue engineering, SCs have been applied widely to tissue and organ regeneration. However, previous studies have shown that SCs are heterogeneous and consist of many cell subpopulations. Owing to this heterogeneity of cell states, gene expression is highly diverse between cells even within a single tissue,making precise identification and analysis of biological properties difficult, which hinders their further research and applications. Therefore, a defined understanding of the heterogeneity is a key to research of SCs. Traditional ensemble-based sequencing approaches, such as microarrays, reflect an average of expression levels across a large population, which overlook unique biological behaviors of individual cells, conceal cell-to-cell variations, and cannot understand the heterogeneity of SCs radically. The development of high throughput single cell RNA sequencing(scRNA-seq) has provided a new research tool in biology, ranging from identification of novel cell types and exploration of cell markers to the analysis of gene expression and predicating developmental trajectories. scRNA-seq has profoundly changed our understanding of a series of biological phenomena. Currently, it has been used in research of SCs in many fields, particularly for the research of heterogeneity and cell subpopulations in early embryonic development. In this review, we focus on the scRNA-seq technique and its applications to research of SCs.  相似文献   

11.
《Cell reports》2023,42(1):111937
  1. Download : Download high-res image (159KB)
  2. Download : Download full-size image
  相似文献   

12.
High-throughput single-cell RNA sequencing (scRNA-seq) has advantages over traditional RNA-seq to explore spatiotemporal information on gene dynamic expressions in heterogenous tissues. We performed Drop-seq, a method for the dropwise sequestration of single cells for sequencing, on protoplasts from the differentiating xylem of Populus alba×Populus glandulosa. The scRNA-seq profiled 9,798 cells, which were grouped into 12 clusters. Through characterization of differentially expressed genes in each cluster and RNA in situ hybridizations, we identified vessel cells, fiber cells, ray parenchyma cells and xylem precursor cells. Diffusion pseudotime analyses revealed the differentiating trajectory of vessels, fiber cells and ray parenchyma cells and indicated a different differentiation process between vessels and fiber cells, and a similar differentiation process between fiber cells and ray parenchyma cells. We identified marker genes for each cell type (cluster) and key candidate regulators during developmental stages of xylem cell differentiation. Our study generates a high-resolution expression atlas of wood formation at the single cell level and provides valuable information on wood formation.  相似文献   

13.
14.
15.
The coronavirus disease 2019 (COVID-19), caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in many deaths throughout the world. It is vital to identify the novel prognostic biomarkers and therapeutic targets to assist with the subsequent diagnosis and treatment plan to mitigate the expansion of COVID-19. Since angiotensin-converting enzyme 2 (ACE2)-positive cells are hosts for COVID-19, we focussed on this cell type to explore the underlying mechanisms of COVID-19. In this study, we identified that ACE2-positive cells from the bronchoalveolar lavage fluid (BALF) of patients with COVID-19 belong to bronchial epithelial cells. Comparing with patients of COVID-19 showing severe symptoms, the antigen processing and presentation pathway was increased and 12 typical genes, HLA-DRB5, HLA-DRB1, CD74, HLA-DRA, HLA-DPA1, HLA-DQA1, HSP90AA1, HSP90AB1, HLA-DPB1, HLA-DQB1, HLA-DQA2, and HLA-DMA, particularly HLA-DPB1, were obviously up-regulated in ACE2-positive bronchial epithelial cells of patients with mild disease. We further discovered SDCBP was positively correlated with above 12 genes particularly with HLA-DPB1 in ACE2-positive bronchial epithelial cells of COVID-19 patients. Moreover, SDCBP may increase the immune infiltration of B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils and dendritic cells in different lung carcinoma. Moreover, we found the expression of SDCBP was positively correlated with the expression of antigen processing and presentation genes in post-mortem lung biopsies tissues, which is consistent with previous discoveries. These results suggest that SDCBP has good potential to be further developed as a novel diagnostic and therapeutic target in the treatment of COVID-19.  相似文献   

16.
17.
18.
19.
20.
There is a growing body of evidence that innate immunity also plays an important role in the progression of hepatitis B virus (HBV) infection. However, there is less study on systematically elucidating the characteristics of innate immunity in HBV-infected pregnant women. We compared the features of peripheral blood mononuclear cells in three healthy pregnant women and three HBV-infected pregnant women by single-cell RNA sequencing. 10 DEGs were detected between groups and monocytes were the main expression source of most of the DEGs, which involved in the inflammatory response, apoptosis and immune regulation. Meanwhile, qPCR and ELISA were performed to verify above genes. Monocytes displayed immune response defect, reflecting poor ability of response to IFN. In addition, eight clusters were identified in monocytes. We identified molecular drivers in monocytes subpopulations.TNFSF10+ monocytes, MT1G+ monocytes and TUBB1+ monocytes were featured with different gene expression pattern and biological function.TNFSF10+ monocytes and MT1G+ monocytes were characterized by high levels of inflammation response.TNFSF10+ monocytes, MT1G+ monocytes and TUBB1+ monocytes showed decreased response to IFN. Our results dissects alterations in monocytes related to the immune response of HBV-infected pregnant women and provides a rich resource for fully understanding immunopathogenesis and developing effective preventing HBV intrauterine infection strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号