首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
miRNAs are a class of non-coding endogenous small RNAs. They play vital roles in plant growth, development, and response to biotic and abiotic stress by negatively regulating genes. Mulberry trees are economically important species with multiple uses. However, to date, little is known about mulberry miRNAs and their target genes. In the present study, three small mulberry RNA libraries were constructed and sequenced using high-throughput sequencing technology. Results showed 85 conserved miRNAs belonging to 31 miRNA families and 262 novel miRNAs at 371 loci. Quantitative real-time PCR (qRT-PCR) analysis confirmed the expression pattern of 9 conserved and 5 novel miRNAs in leaves, bark, and male flowers. A total of 332 potential target genes were predicted to be associated with these 113 novel miRNAs. These results provide a basis for further understanding of mulberry miRNAs and the biological processes in which they are involved.  相似文献   

2.
3.
4.
Zhang Z  Lin H  Shen Y  Gao J  Xiang K  Liu L  Ding H  Yuan G  Lan H  Zhou S  Zhao M  Gao S  Rong T  Pan G 《Molecular biology reports》2012,39(8):8137-8146
MicroRNAs (miRNAs) are a class of small, non-coding regulatory RNAs that regulate gene expression by guiding target mRNA cleavage or translational inhibition in plants and animals. In this study, a small RNA library was constructed to identify conserved miRNAs as well as novel miRNAs in maize seedling roots under low level phosphorus stress. Twelve miRNAs were identified by high throughput sequencing of the library and subsequent analysis, two belong to conserved miRNA families (miRNA399b and miRNA156), and the remaining ten are novel and one of latter is conserved in gramineous species. Based on sequence homology, we predicted 125 potential target genes of these miRNAs and then expression patterns of 7 miRNAs were validated by semi-RT-PCR analysis. MiRNA399b, Zma-miR3, and their target genes (Zmpt1 and Zmpt2) were analyzed by real-time PCR. It is shown that both miRNA399b and Zma-miR3 are induced by low phosphorus stress and regulated by their target genes (Zmpt1 and Zmpt2). Moreover, Zma-miR3, regulated by two maize inorganic phosphate transporters as a newly identified miRNAs, would likely be directly involved in phosphate homeostasis, so was miRNA399b in Arabidopsis and rice. These results indicate that both conserved and maize-specific miRNAs play important roles in stress responses and other physiological processes correlated with phosphate starvation, regulated by their target genes. Identification of these differentially expressed miRNAs will facilitate us to uncover the molecular mechanisms underlying the progression of maize seedling roots development under low level phosphorus stress.  相似文献   

5.
Antrodia cinnamomea, a precious, host-specific brown-rot fungus that has been used as a folk medicine in Taiwan for centuries is known to have diverse bioactive compounds with potent pharmaceutical activity. In this study, different fermentation states of A. cinnamomea (wild-type fruiting bodies and liquid cultured mycelium) were sequenced using the next-generation sequencing (NGS) technique. A 45.58 Mb genome encoding 6,522 predicted genes was obtained. High quality reads were assembled into a total of 13,109 unigenes. Using a previously constructed pipeline to search for microRNAs (miRNAs), we then identified 4 predicted conserved miRNA and 63 novel predicted miRNA-like small RNA (milRNA) candidates. Target prediction revealed several interesting proteins involved in tri-terpenoid synthesis, mating type recognition, chemical or physical sensory protein and transporters predicted to be regulated by the miRNAs and milRNAs.  相似文献   

6.
Yu X  Zhou Q  Li SC  Luo Q  Cai Y  Lin WC  Chen H  Yang Y  Hu S  Yu J 《PloS one》2008,3(8):e2997
  相似文献   

7.
8.
MicroRNAs (miRNAs) are important regulators of plant development and fruit formation. Mature embryos of hickory (Carya cathayensis Sarg.) nuts contain more than 70% oil (comprising 90% unsaturated fatty acids), along with a substantial amount of oleic acid. To understand the roles of miRNAs involved in oil and oleic acid production during hickory embryogenesis, three small RNA libraries from different stages of embryogenesis were constructed. Deep sequencing of these three libraries identified 95 conserved miRNAs with 19 miRNA*s, 7 novel miRNAs (as well as their corresponding miRNA*s), and 26 potentially novel miRNAs. The analysis identified 15 miRNAs involved in oil and oleic acid production that are differentially expressed during embryogenesis in hickory. Among them, nine miRNA sequences, including eight conserved and one novel, were confirmed by qRT-PCR. In addition, 145 target genes of the novel miRNAs were predicted using a bioinformatic approach. Our results provide a framework for better understanding the roles of miRNAs during embryogenesis in hickory.  相似文献   

9.
10.
11.
12.
13.
14.
Yin Z  Li C  Han X  Shen F 《Gene》2008,414(1-2):60-66
MicroRNAs (miRNAs) are a class of non-coding RNAs that have important gene regulation roles in various organisms. To date, a total of 1279 plant miRNAs have been deposited in the miRNA miRBase database (Release 10.1). Many of them are conserved during the evolution of land plants suggesting that the well-conserved miRNAs may also retain homologous target interactions. Recently, little is known about the experimental or computational identification of conserved miRNAs and their target genes in tomato. Here, using a computational homology search approach, 21 conserved miRNAs were detected in the Expressed Sequence Tags (EST) and Genomic Survey Sequence (GSS) databases. Following this, 57 potential target genes were predicted by searching the mRNA database. Most of the target mRNAs appeared to be involved in plant growth and development. Our findings verified that the well-conserved tomato miRNAs have retained homologous target interactions amongst divergent plant species. Some miRNAs express diverse combinations in different cell types and have been shown to regulate cell-specific target genes coordinately. We believe that the targeting propensity for genes in different biological processes can be explained largely by their protein connectivity.  相似文献   

15.
16.
Yang  Yanhui  Chen  Xinjian  Chen  Junying  Xu  Haixia  Li  Juan  Zhang  Zhongyi 《Plant Molecular Biology Reporter》2011,29(4):986-996
We report the use of a high throughput (Solexa) sequencing platform to obtain the sequences of a large number of microRNAs (miRNAs) from the Chinese medicinal plant Rehmannia glutinosa L. The analysis of >14,000,000 sequence reads allowed the identification of seven novel miRNAs (comprising seven miRNA families) and conserved 89 miRNAs (comprising 25 miRNA families) in R. glutinosa. The relative abundance of some these miRNAs was checked using quantitive PCR (qRT-PCR) analysis. Some putative target genes of the novel miRNAs were predicted.  相似文献   

17.
18.
19.
Ji  Xinglai  Li  Heng  Zhang  Weihua  Wang  Jiai  Liang  Lianming  Zou  Chenggang  Yu  Zefen  Liu  Shuqun  Zhang  Ke-Qin 《中国科学:生命科学英文版》2020,63(4):543-551
The lifestyle transition of fungi, defined as switching from taking organic material as nutrients to pathogens, is a fundamental phenomenon in nature. However, the mechanisms of such transition remain largely unknown. Here we show microRNA-like RNAs(milRNAs) play a key role in fungal lifestyle transition for the first time. We identified milRNAs by small RNA sequencing in Arthrobotrys oligospora, a known nematode-trapping fungus. Among them, 7 highly expressed milRNAs were confirmed by northern-blot analysis. Knocking out two milRNAs significantly decreased A. oligospora's ability to switch lifestyles. We further identified that two of these milRNAs were associated with argonaute protein QDE-2 by RNA-immunoprecipitation(RIP) analysis. Three of the predicted target genes of milRNAs were found in immunoprecipitation(IP)products of QDE-2. Disruption of argonaute gene qde-2 also led to serious defects in lifestyle transition. Interestingly, knocking out individual milRNAs or qde-2 lead to diverse responses under different conditions, and qde-2 itself may be targeted by the milRNAs. Collectively, it indicates the lifestyle transition of fungi is mediated by milRNAs through RNA interference(RNAi)machinery, revealing the wide existence of miRNAs in fungi kingdom and providing new insights into understanding the adaptation of fungi from scavengers to predators and the mechanisms underlying fungal infections.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号