首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
人类基因组结构变异   总被引:2,自引:0,他引:2  
何永蜀  张闻  杨照青 《遗传》2009,31(8):771-778
基因组结构变异通常是指基因组内大于1 kb的DNA片段缺失、插入、重复、倒位、易位以及DNA拷贝数目变化(CNVs)。人类基因组结构变异涉及数千片段不连续的基因组区域, 含数百万DNA碱基对, 可含数个基因及调控序列, 多种基因功能因此缺失或改变, 导致机体表型变化、疾病易感性改变或发生疾病。对基因组结构变异的研究, 有助于用动态的观点全面分析基因组遗传变异得到整合的基因型, 理解结构变异的潜在医学作用及机体整体功能的复杂性。文章从人类基因组结构变异的类型、研究方法, 对个体表型、疾病及生物进化的影响等方面综合阐述人类基因组结构变异的最新研究进展。  相似文献   

2.
Structural variation in the human genome   总被引:11,自引:0,他引:11  
The first wave of information from the analysis of the human genome revealed SNPs to be the main source of genetic and phenotypic human variation. However, the advent of genome-scanning technologies has now uncovered an unexpectedly large extent of what we term 'structural variation' in the human genome. This comprises microscopic and, more commonly, submicroscopic variants, which include deletions, duplications and large-scale copy-number variants - collectively termed copy-number variants or copy-number polymorphisms - as well as insertions, inversions and translocations. Rapidly accumulating evidence indicates that structural variants can comprise millions of nucleotides of heterogeneity within every genome, and are likely to make an important contribution to human diversity and disease susceptibility.  相似文献   

3.
4.
5.
Background and aimsGenome size varies considerably across the diversity of plant life. Although genome size is, by definition, affected by genetic presence/absence variants, which are ubiquitous in population sequencing studies, genome size is often treated as an intrinsic property of a species. Here, we studied intra- and interspecific genome size variation in taxonomically complex British eyebrights (Euphrasia, Orobanchaceae). Our aim is to document genome size diversity and investigate underlying evolutionary processes shaping variation between individuals, populations and species.MethodsWe generated genome size data for 192 individuals of diploid and tetraploid Euphrasia and analysed genome size variation in relation to ploidy, taxonomy, population affiliation and geography. We further compared the genomic repeat content of 30 samples.Key resultsWe found considerable intraspecific genome size variation, and observed isolation-by-distance for genome size in outcrossing diploids. Tetraploid Euphrasia showed contrasting patterns, with genome size increasing with latitude in outcrossing Euphrasia arctica, but with little genome size variation in the highly selfing Euphrasia micrantha. Interspecific differences in genome size and the genomic proportions of repeat sequences were small.ConclusionsWe show the utility of treating genome size as the outcome of polygenic variation. Like other types of genetic variation, such as single nucleotide polymorphisms, genome size variation may be affected by ongoing hybridization and the extent of population subdivision. In addition to selection on associated traits, genome size is predicted to be affected indirectly by selection due to pleiotropy of the underlying presence/absence variants.  相似文献   

6.
As part of a larger project to sequence the Populus genome and generate genomic resources for this emerging model tree, we constructed a physical map of the Populus genome, representing one of the few such maps of an undomesticated, highly heterozygous plant species. The physical map, consisting of 2802 contigs, was constructed from fingerprinted bacterial artificial chromosome (BAC) clones. The map represents approximately 9.4-fold coverage of the Populus genome, which has been estimated from the genome sequence assembly to be 485 ± 10 Mb in size. BAC ends were sequenced to assist long-range assembly of whole-genome shotgun sequence scaffolds and to anchor the physical map to the genome sequence. Simple sequence repeat-based markers were derived from the end sequences and used to initiate integration of the BAC and genetic maps. A total of 2411 physical map contigs, representing 97% of all clones assigned to contigs, were aligned to the sequence assembly (JGI Populus trichocarpa , version 1.0). These alignments represent a total coverage of 384 Mb (79%) of the entire poplar sequence assembly and 295 Mb (96%) of linkage group sequence assemblies. A striking result of the physical map contig alignments to the sequence assembly was the co-localization of multiple contigs across numerous regions of the 19 linkage groups. Targeted sequencing of BAC clones and genetic analysis in a small number of representative regions showed that these co-aligning contigs represent distinct haplotypes in the heterozygous individual sequenced, and revealed the nature of these haplotype sequence differences.  相似文献   

7.
The anaphase-promoting complex or cyclosome (APC/C) controls sister chromatid segregation and the exit from mitosis by catalysing the ubiquitylation of cyclins and other cell cycle regulatory proteins. This unusually large E3 RING-cullin ubiquitin ligase is assembled from 13 different proteins. Selection of APC/C targets is controlled through recognition of short destruction motifs, predominantly the D box and KEN box. APC/C-mediated coordination of cell cycle progression is achieved through the temporal regulation of APC/C activity and substrate specificity, exerted through a combination of co-activator subunits, reversible phosphorylation and inhibitory proteins and complexes. Recent structural and biochemical studies of the APC/C are beginning to reveal an understanding of the roles of individual APC/C subunits and co-activators and how they mutually interact to mediate APC/C functions. This review focuses on the findings showing how information on the structural organization of the APC/C provides insights into the role of co-activators and core APC/C subunits in mediating substrate recognition. Mechanisms of regulating and modulating substrate recognition are discussed in the context of controlling the binding of the co-activator to the APC/C, and the accessibility and conformation of the co-activator when bound to the APC/C.  相似文献   

8.
The structure of the transgenic mouse DNA region containing an integrated transgene (fragment of pBR322 sequence) was analysed. In one of the sequences flanking the transgene, short direct and inverted overlapping repeats were revealed at a distance of 60 bp from the integration site. In the same flanking sequence, there is an extended sequence (3.5 kbp) 0.3-1 kbp away from the transgene. It repeats 100-300 times in the mouse genome and is highly conservative (the homologs of the repeat have been revealed in other mammalian, bird, fish and insect genomes). This up-to-date unknown family of highly-conserved dispersed repeats has been denoted by T1. We believe that both the revealed short inverted repeats capable of forming hairpins with loops and the T1 repeat are structures involved in the process of non-homologous insertion of foreign DNA into the region of the transgenic mouse genome.  相似文献   

9.
The transfer of the long T-DNA (T-DNA and non-T-DNA) of a binary plasmid from Agrobacterium into the rice genome was investigated at both molecular and genetic levels. Out of 226 independent transgenic plants, 33% of the transformants contained non-T-DNA sequences. There was no major difference in the frequency of non-T-DNA transfer among three Agrobacterium tumefaciens strains.Four T1 plants containing a single putative long T-DNA insertion were selected for Southern analysis. Three of them were confirmed to have a long T-DNA insertion with a size of greater-than-unit-length of the binary plasmid. This was further confirmed by rescuing the intact binary plasmid from these plants. Our results suggest that long T-DNA transfer by rolling-circle replication from Agrobacterium to rice occurs frequently, and that the high frequency of non-T-DNA transfer should be considered when producing transgenic rice for commercial production. Received: 22 April 1999 / Accepted: 22 June 1999  相似文献   

10.

Background and Aims

Genome duplication is a central process in plant evolution and contributes to patterns of variation in genome size within and among lineages. Studies that combine cytogeography with genome size measurements contribute to our basic knowledge of cytotype distributions and their associations with variation in genome size.

Methods

Ploidy and genome size were assessed with direct chromosome counts and flow cytometry for 78 populations within the Claytonia perfoliata complex, comprised of three diploid taxa with numerous polyploids that range to the decaploid level. The relationship between genome size and temperature and precipitation was investigated within and across cytotypes to test for associations between environmental factors and nuclear DNA content.

Key Results

A euploid series (n = 6) of diploids to octoploids was documented through chromosome counts, and decaploids were suggested by flow cytometry. Increased variation in genome size among populations was found at higher ploidy levels, potentially associated with differential contributions of diploid parental genomes, variation in rates of genomic loss or gain, or undetected hybridization. Several accessions were detected with atypical genome sizes, including a diploid population of C. parviflora ssp. grandiflora with an 18 % smaller genome than typical, and hexaploids of C. perfoliata and C. parviflora with genomes 30 % larger than typical. There was a slight but significant association of larger genome sizes with colder winter temperature across the C. perfoliata complex as a whole, and a strong association between lower winter temperatures and large genome size for tetraploid C. parviflora.

Conclusions

The C. perfoliata complex is characterized by polyploids ranging from tetraploid to decaploid, with large magnitude variation in genome size at higher ploidy levels, associated in part with environmental variation in temperature.  相似文献   

11.
《Genomics》2020,112(1):831-836
Copy number variation (CNV) refers to a kind of structural variation, having functional and evolutionary effects on phenotypes. Thus far, further elucidation of the CNVs in different Chinese indigenous cattle breeds by whole genome sequencing have yet not been done. In this study, a comprehensive genomic analysis was performed on 75 cattle individuals including six Chinese indigenous cattle breeds and two non-native specialized beef cattle breeds. Based on the 11,486 CNVRs discovered, population analysis was performed, showed that all the cattle breeds clustered in to three clades, consistent with their lineages Bos taurus, Bos taurus × Bos indicus and Bos indicus. Importantly, a set of CNVRs related genes were found to be associated with the traits of interest, which include meat production or quality (CAST, ACTC1, etc.), adaption (BLA-DQB, EGLN2, etc.) and coat color (KIT, MITF, etc.). These results provide valuable full genome variation resources for Chinese bovine genome research and would be helpful for cattle breeding and selection programs in the future.  相似文献   

12.
The occipital bun ("chignon") is cited widely as a Neanderthal derived trait. It encompasses the posterior projection/convexity of the occipital squama and is associated with lambdoid flattening on the parietal. A 'hemibun' in some Upper Paleolithic Europeans is thought by some authors to indicate interbreeding between Neanderthals and early modern Europeans. However, 'bunning' is difficult to measure, and the term has been applied to a range of morphological patterns. Furthermore, its usefulness in phylogenetic reconstruction and its homologous status across modern and fossil humans have been disputed. We present a geometric morphometric study that quantitatively evaluates the chignon, assesses its usefulness in separating Neanderthals from modern humans, and its degree of similarity to Upper Paleolithic 'hemibuns.' We measured the three-dimensional coordinates of closely spaced points along the midsagittal plane from bregma to inion and of anatomical landmarks in a large series of recent human crania and several Middle and Late Pleistocene European and African fossils. These coordinate data were processed using the techniques of geometric morphometrics and analyzed with relative warps, canonical variates, and singular warps. Our results show no separation between Neanderthals and modern humans, including early modern Europeans, when the shape of the occipital plane midsagittal-profile is considered alone. On the other hand, Neanderthals are well separated from both recent and fossil modern humans when information about the occipital's relative position and relative size are also included. Furthermore, the occurrence of a highly convex and posteriorly projecting midline occipital profile (interpreted as the occipital bun) is highly correlated (>0.8) with a flat parietal midsagittal profile and with antero-superiorly positioned temporal bones across both our recent and our fossil human samples. We conclude that the shape of the occipital profile alone should not be considered an independent trait, as it is very tightly integrated with braincase shape. Our analysis does not support differences in integration of the posterior midsagittal profile and the cranial base in Pleistocene and recent humans.  相似文献   

13.
Hu XS  Yeh FC  Wang Z 《Current Genomics》2011,12(1):55-70
An integration of the pattern of genome-wide inter-site associations with evolutionary forces is important for gaining insights into the genomic evolution in natural or artificial populations. Here, we assess the inter-site correlation blocks and their distributions along chromosomes. A correlation block is broadly termed as the DNA segment within which strong correlations exist between genetic diversities at any two sites. We bring together the population genetic structure and the genomic diversity structure that have been independently built on different scales and synthesize the existing theories and methods for characterizing genomic structure at the population level. We discuss how population structure could shape correlation blocks and their patterns within and between populations. Effects of evolutionary forces (selection, migration, genetic drift, and mutation) on the pattern of genome-wide correlation blocks are discussed. In eukaryote organisms, we briefly discuss the associations between the pattern of correlation blocks and genome assembly features in eukaryote organisms, including the impacts of multigene family, the perturbation of transposable elements, and the repetitive nongenic sequences and GC-rich isochores. Our reviews suggest that the observable pattern of correlation blocks can refine our understanding of the ecological and evolutionary processes underlying the genomic evolution at the population level.  相似文献   

14.
Among the plethora of affinity biosensor systems based on biomolecular recognition and labeling assays, magnetic labeling and detection is emerging as a promising new approach. Magnetic labels can be non-invasively detected by a wide range of methods, are physically and chemically stable, relatively inexpensive to produce, and can be easily made biocompatible. Here we provide an overview of the various approaches developed for magnetic labeling and detection as applied to biosensing. We illustrate the challenges to integrating one such approach into a complete sensing system with a more detailed discussion of the compact Bead Array Sensor System developed at the U.S. Naval Research Laboratory, the first system to use magnetic labels and microchip-based detection.  相似文献   

15.
Meiosis-driven genome variation in plants   总被引:1,自引:0,他引:1  
Cai X  Xu SS 《Current Genomics》2007,8(3):151-161
Meiosis includes two successive divisions of the nucleus with one round of DNA replication and leads to the formation of gametes with half of the chromosomes of the mother cell during sexual reproduction. It provides a cytological basis for gametogenesis and nheritance in eukaryotes. Meiotic cell division is a complex and dynamic process that involves a number of molecular and cellular events, such as DNA and chromosome replication, chromosome pairing, synapsis and recombination, chromosome segregation, and cytokinesis. Meiosis maintains genome stability and integrity over sexual life cycles. On the other hand, meiosis generates genome variations in several ways. Variant meiotic recombination resulting from specific genome structures induces deletions, duplications, and other rearrangements within the genic and non-genic genomic regions and has been considered a major driving force for gene and genome evolution in nature. Meiotic abnormalities in chromosome segregation lead to chromosomally imbalanced gametes and aneuploidy. Meiotic restitution due to failure of the first or second meiotic division gives rise to unreduced gametes, which triggers polyploidization and genome expansion. This paper reviews research regarding meiosis-driven genome variation, including deletion and duplication of genomic regions, aneuploidy, and polyploidization, and discusses the effect of related meiotic events on genome variation and evolution in plants. Knowledge of various meiosis-driven genome variations provides insight into genome evolution and genetic variability in plants and facilitates plant genome research.  相似文献   

16.
Insulators are DNA-protein complexes that can mediate interactions in cis or trans between different regions of the genome. Although originally defined on the basis of their ability to block enhancer-promoter communication or to serve as barriers against the spreading of heterochromatin in reporter systems, recent information suggests that their function is more nuanced and depends on the nature of the sequences brought together by contacts between specific insulator sites. Here we provide an overview of new evidence that has uncovered a wide range of functions for these sequences in addition to their two classical roles.  相似文献   

17.
MOTIVATION:Despite the numerous available whole-genome mapping resources, no comprehensive, integrated map of the human genome yet exists. RESULTS: GeneLoc, software adjunct to GeneCards and UDB, integrates gene lists by comparing genomic coordinates at the exon level and assigns unique and meaningful identifiers to each gene.  相似文献   

18.
Availability of the human genome data has enabled the exploration of a huge amount of biological information encoded in it. There are extensive ongoing experimental efforts to understand the biological functions of the gene products encoded in the human genome. However, computational analysis can aid immensely in the interpretation of biological function by associating known functional/structural domains to the human proteins. In this article we have discussed the implications of such associations. The association of structural domains to human proteins could help in prioritizing the targets for structure determination in the structural genomics initiatives. The protein kinase family is one of the most frequently occurring protein domain families in the human proteome while P-loop hydrolase, which comprises many GTPases and ATPases, is a highly represented superfamily. Using the superfamily relationships between families of unknown and known structures we could increase structural information content of the human genome by about 5%. We could also make new associations of domain families to 33 human proteins that are potentially linked to genetically inherited diseases.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号