首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wingless (wg)/Wnt family genes encode secreted glycoproteins that function as signalling molecules in the development of vertebrates as well as invertebrates. In a survey of Wnt family genes in the newly sequenced Tribolium genome, we found a total of nine Wnt genes. In addition to wg or Wnt1, Tribolium contains orthologs of the vertebrate Wnt5-7 and Wnt9-11 genes. As in Drosophila, Wnt1, Wnt6 and Wnt10 are clustered in the genome. Comparative genomics indicates that Wnt9 is also a conserved member of this cluster in several insects for which genome sequence is available. One of the Tribolium Wnt genes appears to be a member of the WntA family, members of which have been identified in Anopheles and other invertebrates but not in Drosophila or vertebrates. Careful phylogenetic examination suggests an Apis Wnt gene, previously identified as a Wnt4 homolog, is also a member of the WntA family. The ninth Tribolium Wnt gene is related to the diverged Drosophila WntD gene, both of which phylogenetically group with Wnt8 genes. Some of the Tribolium Wnt genes display multiple overlapping expression patterns, suggesting that they may be functionally redundant in segmentation, brain, appendage and hindgut development. In contrast, the unique expression patterns of Wnt5, Wnt7 and Wnt11 in developing appendages likely indicate novel functions.  相似文献   

2.
3.
Wasps, beetles and the beginning of the ends   总被引:1,自引:0,他引:1  
Recent papers investigating the genes regulating early embryogenesis in the wasp Nasonia vitripennis and the beetle Tribolium castaneum have provided us with important clues as to how early development is controlled in insects other than higher dipterans such as Drosophila melanogaster. The results of these studies demonstrate that in insects that do not have bicoid, anterior patterning is regulated by a combination of maternal orthodenticle and hunchback. Furthermore, during the evolution of long-germ-band development, Nasonia and Drosophila may have evolved different mechanisms to pattern posterior segments, marginalising the important role of the terminal system in short-germ-band embryos.  相似文献   

4.
5.
Leg development in Drosophila has been studied in much detail. However, Drosophila limbs form in the larva as imaginal discs and not during embryogenesis as in most other arthropods. Here, we analyze appendage genes in the spider Cupiennius salei and the beetle Tribolium castaneum. Differences in decapentaplegic (dpp) expression suggest a different mode of distal morphogen signaling suitable for the specific geometry of growing limb buds. Also, expression of the proximal genes homothorax (hth) and extradenticle (exd) is significantly altered: in the spider, exd is restricted to the proximal leg and hth expression extends distally, while in insects, exd is expressed in the entire leg and hth is restricted to proximal parts. This reversal of spatial specificity demonstrates an evolutionary shift, which is nevertheless compatible with a conserved role of this gene pair as instructor of proximal fate. Different expression dynamics of dachshund and Distal-less point to modifications in the regulation of the leg gap gene system. We comment on the significance of this finding for attempts to homologize leg segments in different arthropod classes. Comparison of the expression profiles of H15 and optomotor-blind to the Drosophila patterns suggests modifications also in the dorsal-ventral patterning system of the legs. Together, our results suggest alterations in many components of the leg developmental system, namely proximal-distal and dorsal-ventral patterning, and leg segmentation. Thus, the leg developmental system exhibits a propensity to evolutionary change, which probably forms the basis for the impressive diversity of arthropod leg morphologies.  相似文献   

6.
7.
In the long-germband insect Drosophila, all body segments and posterior terminal structures, including the posterior gut and anal pads, are specified at the blastoderm stage. In short- and intermediate-germband insects, however, posterior segments are sequentially produced from the posterior growth zone, a process resembling somitogenesis in vertebrates, and invagination of the posterior gut starts after anteroposterior (AP) axial elongation from the growth zone. The mechanisms underlying posterior segmentation and terminal patterning in these insects are poorly understood. In order to elucidate these mechanisms, we have investigated the roles of the Brachyury/brachyenteron (Bra/byn) homolog in the intermediate-germband cricket Gryllus bimaculatus. Loss-of-function analysis by RNA interference (RNAi) revealed that Gryllus byn (Gb'byn) is not required for AP axial elongation or normal segment formation, but is required for specification of the posterior gut. We also analyzed Gryllus caudal (Gb'cad) RNAi embryos using in situ hybridization with a Gb'byn probe, and found that Gb'cad is required for internalization of the posterior gut primordium, in addition to AP axial elongation. These results suggest that the functions of byn and cad in posterior terminal patterning are highly conserved in Gryllus and Drosophila despite their divergent posterior patterning. Moreover, because it is thought that the progressive growth of the AP axis from the growth zone, controlled by a genetic program involving Cdx/cad and Bra/byn, might be ancestral to bilaterians, our data suggest that the function of Bra/byn in this process might have been lost in insects.  相似文献   

8.
Though initially identified as necessary for neural migration, Disconnected and its partially redundant paralog, Disco-related, are required for proper head segment identity during Drosophila embryogenesis. Here, we present evidence that these genes are also required for proper ventral appendage development during development of the adult fly, where they specify medial to distal appendage development. Cells lacking the disco genes cannot contribute to the medial and distal portions of ventral appendages. Further, ectopic disco transforms dorsal appendages toward ventral fates; in wing discs, the medial and distal leg development pathways are activated. Interestingly, this appendage role is conserved in the red flour beetle, Tribolium (where legs develop during embryogenesis), yet in the beetle we found no evidence for a head segmentation role. The lack of an embryonic head specification role in Tribolium could be interpreted as a loss of the head segmentation function in Tribolium or gain of this function during evolution of flies. However, we suggest an alternative explanation. We propose that the disco genes always function as appendage factors, but their appendage nature is masked during Drosophila embryogenesis due to the reduction of limb fields in the maggot style Drosophila larva.  相似文献   

9.
The Drosophila gut is composed of three major parts, the foregut, midgut and hindgut, which arise from anterior and posterior invaginations of the early blastoderm. We review the process of the specification of the gut primordia, subsequent subdivision and region-specific cell differentiation in terms of developmental genetics. Graded activities of maternal signals at anterior and posterior terminal domains of the blastoderm, being mediated by activities of two zygotic gap genes, tailless and huckebein, lead to the activation of key genes that determine the gut primordia: serpent (GATA factor gene) for the endodermal midgut; brachyenteron (Brachyury homolog) for the ectodermal hindgut. fork head (HNF-3 homolog) and caudal (Cdx homolog) are also essential for the development of all gut primordia or hindgut primordium, respectively. Subdivision of the midgut epithelium is regulated by inductive signals emanating from the visceral mesoderm, which is under the control of HOM-C genes. In contrast, pattern formation of the ectodermal foregut and hindgut is regulated by secreted signaling molecules, such as Wingless (Wnt homolog), Hedgehog and Decapentaplegic (Bmp-4 homolog), as in the case of segmented structures and imaginal discs. Finally, the gut is subdivided into at least 36 compartments that are recognized asminimum tissue units of regional differentiation. A few genes that are responsible for determining and maintaining the state of overt-differentiation of the compartments have also been reported. A marked feature of the genetic mechanism of the gut development is the unexpectedly wide spectrum of the similarities of relevant genes and regulatory pathways of gene expression between Drosophila and vertebrates, which may imply a prototypic style of body plan common to protostomes and deuterostomes.  相似文献   

10.
11.
Segmentation is well understood in Drosophila, where all segments are determined at the blastoderm stage. In the flour beetle Tribolium castaneum, as in most insects, the posterior segments are added at later stages from a posteriorly located growth zone, suggesting that formation of these segments may rely on a different mechanism. Nevertheless, the expression and function of many segmentation genes seem conserved between Tribolium and Drosophila. We have cloned the Tribolium ortholog of the abdominal gap gene giant. As in Drosophila, Tribolium giant is expressed in two primary domains, one each in the head and trunk. Although the position of the anterior domain is conserved, the posterior domain is located at least four segments anterior to that of Drosophila. Knockdown phenotypes generated with morpholino oligonucleotides, as well as embryonic and parental RNA interference, indicate that giant is required for segment formation and identity also in Tribolium. In giant-depleted embryos, the maxillary and labial segment primordia are normally formed but assume thoracic identity. The segmentation process is disrupted only in postgnathal metamers. Unlike Drosophila, segmentation defects are not restricted to a limited domain but extend to all thoracic and abdominal segments, many of which are specified long after giant expression has ceased. These data show that giant in Tribolium does not function as in Drosophila, and suggest that posterior gap genes underwent major regulatory and functional changes during the evolution from short to long germ embryogenesis.  相似文献   

12.
13.
In the Drosophila segmentation hierarchy, periodic expression of pair-rule genes translates gradients of regional information from maternal and gap genes into the segmental expression of segment polarity genes. In Tribolium, homologs of almost all the eight canonical Drosophila pair-rule genes are expressed in pair-rule domains, but only five have pair-rule functions. even-skipped, runt and odd-skipped act as primary pair-rule genes, while the functions of paired (prd) and sloppy-paired (slp) are secondary. Since secondary pair-rule genes directly regulate segment polarity genes in Drosophila, we analyzed Tc-prd and Tc-slp to determine the extent to which this paradigm is conserved in Tribolium. We found that the role of prd is conserved between Drosophila and Tribolium; it is required in both insects to activate engrailed in odd-numbered parasegments and wingless (wg) in even-numbered parasegments. Similarly, slp is required to activate wg in alternate parasegments and to maintain the remaining wg stripes in both insects. However, the parasegmental register for Tc-slp is opposite that of Drosophila slp1. Thus, while prd is functionally conserved, the fact that the register of slp function has evolved differently in the lineages leading to Drosophila and Tribolium reveals an unprecedented flexibility in pair-rule patterning.  相似文献   

14.
15.
16.
We describe the first complete mitochondrial genome sequence from a representative of the insect order Coleoptera, the flour beetle Tribolium castaneum. The 15,881 bp long Tribolium mitochondrial genome encodes 13 putative proteins, two ribosomal RNAs and 22 tRNAs canonical for animal mitochondrial genomes. Their arrangement is identical to that in Drosophila melanogaster, which is considered ancestral for insects and crustaceans (Boore et al., 1998; Hwang, et al., 2001a). Nucleotide composition, amino acid composition, and codon usage fall within the range of values observed in other insect mitochondrial genomes. Most notable features are the use of TCT as tRNA(Ser(AGN)) anticodon instead of GCT, which is used in most other arthropod species, and the relative scarcity of special sequence motifs in the 1431 bp long control region. Phylogenetic analysis confirmed resolving power in the conserved regions of the mitochondrial proteome regarding diversification events, which predate the emergence of pterygote insects, while little resolution was obtained at the level of basal perygote diversification. The partition of faster evolving amino acid sites harbored strong support for joining Lepidoptera with Diptera, which is consistent with a monophyletic Mecopterida.  相似文献   

17.
The Drosophila teashirt gene acts in concert with the homeotic selector (Hox) genes to specify trunk (thorax and abdomen) identity. There has been speculation that this trunk-specifying function might be very ancient, dating back to the common ancestor of insects and vertebrates. However, other evidence suggests that the role of teashirt in trunk identity is not well conserved even within the Insecta. To address this issue, we have analyzed the function of Tc-tiotsh, the lone teashirt family member in the red flour beetle, Tribolium castaneum. Although Tc-tiotsh is important for aspects of both embryonic and imaginal development including some trunk features, we find no evidence that it acts as a trunk identity gene. We discuss this finding in the context of recent insights into the evolution and function of the Drosophila teashirt family genes. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
19.
20.
We report here on the use of RNA interference (RNAi) to create pupal and adult loss-of-function phenotypes in the red flour beetle, Tribolium castaneum, by injection of double-stranded RNA (dsRNA) into late instar larvae (we refer to this method as larval RNAi). RNAi is well-established as a useful method to mimic loss-of-function phenotypes in many organisms including insects. However, with a few exceptions (such as in the fruit fly Drosophila melanogaster), RNAi analysis has usually been limited to studies of embryogenesis. Here we demonstrate that injection of green fluorescent protein (GFP) dsRNA into the larval body cavity can inhibit GFP expression beginning shortly after injection and continuing through pupal and adult stages. RNAi analysis of the Tc-achaete-scute-homolog (Tc-ASH) revealed that larval RNAi can induce morphological defects in adult beetles, and also that larval RNAi affects the entire body rather than being localized near the site of injection. The larval RNAi technique will be useful to analyze gene functions in post-embryonic development, giving us the opportunity to study the molecular basis of adult morphological diversity in various organisms.Edited by D. Tautz  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号