首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Expression of sialosyl-Le(x) (SLe(x)) and sialosyl-Le(a) (SLe(a)) on tumor cell lines HL60, Colo205, and U937 was greatly suppressed by application of benzyl-alpha-GalNAc for inhibition of O-linked carbohydrate chain extension, which resulted in reduced adhesion of tumor cells to activated endothelial cells or platelets mediated by ELAM-1 (E-selectin) or GMP-140 (P-selectin). Inhibitors or modifiers of N-glycosylation had no effect on expression of SLe(x) or SLe(a) in these tumor cells. These findings suggest the possibility that targeting of O-glycosylation inhibitors or modifiers to tumor cells may effectively suppress metastatic potential.  相似文献   

2.
GMP-140 (CD62; PADGEM) is a member of the selectin family expressed highly at the surface of platelets and endothelial cells by agonists such as thrombin or phorbol esters. Previous studies indicate that the lectin domain of GMP-140 recognizes sialosyl-Le(x) (SLex) and to a lesser extent Le(x) (Polley MJ, et al., Proc Natl Acad Sci USA 88:6224, 1991). We now report that GMP-140 binds to sialosyl Lea (SLea) and to SLex, and that degree of binding to SLea is greater than that to SLex under our experimental conditions. Binding of activated platelets to SLea or SLex was inhibited to various degrees in the presence of sulfated glycans, suggesting that sulfated glycans induce conformational change in the lectin domain of GMP-140 and modulates its binding affinity to SLea and SLex.  相似文献   

3.
GMP-140 binding to neutrophils is inhibited by sulfated glycans.   总被引:11,自引:0,他引:11  
GMP-140 is a 140-kDa granule membrane glycoprotein localized to the alpha-granules of platelets and the Weibel-Palade bodies of endothelial cells. Expression of GMP-140 on the activated cell surface has been shown to mediate the adhesion of thrombin-activated platelets to neutrophils and monocytes and the transient adhesion of neutrophils to endothelium. In contrast, fluid-phase GMP-140 strongly inhibits the CD18-dependent adhesion of tumor necrosis factor alpha-activated neutrophils to endothelium suggesting that GMP-140 can also serve an anti-adhesive function. In the present report, it is demonstrated that fluid-phase GMP-140 which exists predominantly as a tetramer binds to a single class of high affinity receptor on neutrophils and HL60 cells. Binding of 125I-labeled GMP-140 to neutrophils and HL60 cells and the rosetting of neutrophils and HL60 cells by thrombin-activated platelets were inhibited by EDTA, excess unlabeled fluid-phase GMP-140, Fab fragments of an affinity-purified rabbit anti-GMP-140 antibody, and by the murine anti-GMP-140 monoclonal antibody, AK 4. Both neutrophil and HL60 GMP-140 binding and platelet rosetting were strongly inhibited by heparin, fucoidin, and dextran sulfate 500,000, were partially inhibited by dextran sulfate 5,000 and lambda- and kappa-carrageenan, but were not inhibited by chondroitins 4- and 6-sulfate. Since this sulfated glycan specificity is identical to that previously reported by us for GMP-140, the present results suggest that the sulfated glycan binding site and the neutrophil receptor binding site on GMP-140 are either identical or proximal.  相似文献   

4.
We have examined the cell activation-dependent redistribution of the intracellular granule membrane protein GMP-140 of human endothelial cells. By dual-label immunofluorescence, the distribution of GMP-140 within cultured human umbilical vein endothelial cells was found to coincide with the distribution of von Willebrand factor (vWF), suggesting that GMP-140 is located in the membranes of vWF-containing storage granules. Stimulation of vWF secretion resulted in an increase in GMP-140 on the cell surface, as detected by increased binding of the monoclonal antibody S12 which recognizes the extracytoplasmic domain of GMP-140. For each agonist tested (histamine, thrombin, phorbol 12-myristate 13-acetate, and the calcium ionophore A23187) a dose-dependent redistribution of GMP-140 to the endothelial surface was observed which closely paralleled the dose-dependent secretion of vWF into the cell supernatant. When cells were maximally stimulated by histamine in the presence of antibody S12, a 4-fold increase in S12 uptake by the cells was observed. This increase occurred rapidly and reached a plateau by 10 min. In contrast, when histamine-stimulated cells were first fixed with paraformaldehyde or chilled to 4 degrees C before addition of antibody S12, only a transient increase in cell surface GMP-140 was detected. Under these conditions of arrested membrane turnover during antibody binding, cell surface GMP-140 was maximal 3 min after histamine stimulation and then declined to control levels by 20 min. These data suggest that stimulated secretion of vWF from endothelial cells entails fusion of vWF-containing storage granules with the plasma membrane. Once inserted into the plasma membrane, GMP-140 is subsequently removed from the endothelial surface, most likely by an endocytic mechanism.  相似文献   

5.
Platelet GMP-140, along with ELAM-1 and gp90MEL, comprise the LEC-CAM family of cell-cell adhesion proteins. The three proteins demonstrate a highly related domain organization, which includes an extracellular calcium-type lectin motif. gp90MEL, a lymphocyte homing receptor, mediates lymphocyte attachment to high endothelial venules of lymph nodes through recognition of a sialylated ligand on the endothelial cells. The rosetting of neutrophils or promyelocytic HL60 cells by activated platelets is mediated by GMP-140 on the platelets. We show here that treatment of neutrophils or HL60 cells with 3 broad spectrum sialidases completely prevents rosetting. However, the Newcastle disease virus sialidase, an enzyme specific for alpha 2,3 and alpha 2,8 linkages of sialic acid does not affect rosetting of HL60 cells. These results indicate that the ligand for GMP-140 requires sialic acid and suggest that an alpha 2,6 linkage may be critical.  相似文献   

6.
Granule membrane protein-140 (GMP-140) is an inducible receptor for myeloid leukocytes on activated platelets and endothelium. Like other selectins, GMP-140 recognizes specific oligosaccharide ligands. However, prior data on the nature of these ligands are contradictory. We investigated the structural features required for ligand interaction with GMP-140 using purified GMP-140, cells naturally expressing specific oligosaccharides, and cells expressing cloned glycosyltransferases. Like the related selectin endothelial leukocyte adhesion molecule-1 (ELAM-1), GMP-140 recognizes alpha(2-3)sialylated, alpha(1-3)fucosylated lactosaminoglycans on both myeloid and nonmyeloid cells, including the sequence Neu5Ac alpha 2-3Gal beta 1-4(Fuc alpha 1-3)GlcNac beta-R (sialyl Lewis x). Recognition requires sialic acid, because cells expressing large amounts of Lewis x, but not sialyl Lewis x, do not interact with GMP-140. Although sialyl Lewis x is expressed by both myeloid HL-60 cells and CHO cells transfected with an alpha 1-3/4 fucosyltransferase, GMP-140 binds with significantly higher affinity to HL-60 cells. Thus, the sialyl Lewis x tetrasaccharide may require additional structural modifications or specific presentations in order for leukocytes in flowing blood to interact rapidly and with high affinity to GMP-140 on activated platelets or endothelium.  相似文献   

7.
We have characterized the mechanisms by which thrombin enhances neutrophil leukocyte (PMN) adhesion to human endothelial cells in vitro. Thrombin rapidly and transiently increased PMN adhesion by an action on the endothelial cells. The transience of the response was due to at least two factors: desensitization of the endothelial cell responsiveness to thrombin in the continued presence of the agonist; and the lability (t1/2 less than 15 min) of the effector molecules expressed by the endothelium. Experiments with exogenous platelet-activating factor (PAF) and with PAF antagonists demonstrated that PAF production, although it may facilitate the enhanced PMN adhesion seen in response to thrombin, is not sufficient to explain the reaction. By using a variety of antibodies directed against cell surface ligands, and comparing adhesion of PMN to endothelium and to protein-coated surfaces, we deduce that several endothelial ligands not previously reported as playing a role in PMN adhesion are involved in these interactions. Of particular interest was the finding that antibodies recognizing two thrombin-regulated endothelial cell surface ligands, GMP-140 and the CD63-related Ag, both inhibited adhesion of PMN to thrombin- or LPS-pretreated endothelium. We conclude that thrombin acts to enhance PMN adhesion to endothelium at least in part by transiently altering the conformation or level of expression of these ligands.  相似文献   

8.
Monoclonal and polyclonal antibodies have been developed that recognize a 140 kD glycoprotein on the plasma membrane of activated, but not unstimulated, platelets. This glycoprotein is found in resting platelets as an alpha-granule membrane protein and has therefore been named GMP-140. After thrombin stimulation, alpha-granules fuse with the surface-connected canalicular system and GMP-140 is redistributed to the plasma membrane. In the present study, we immunolabeled unstimulated and activated human platelets and analyzed the distribution of GMP-140 over broad expanses of the plasma membrane using surface replication techniques. Fixed platelets were allowed to settle onto poly-L-lysine-coated coverslips and immunolabeled with polyclonal anti-GMP-140, followed by protein A gold. After critical-point drying, rotary-shadowed surface replicas were made. GMP-140 was not present on the surfaces of unstimulated platelets, but thrombin stimulation resulted in the massive expression of GMP-140 on the cell surface, with the immunogold label monodispersed. In contrast, we recently found that GPIIb-IIIa, the fibrinogen receptor, is monodispersed on unstimulated platelets and clustered on activated platelets. Although GMP-140's hemostatic function is unknown, its monodispersed surface pattern implies significant differences form GPIIb-IIIa with respect to ligand binding and/or cytoskeletal interaction.  相似文献   

9.
GMP-140 is an integral membrane glycoprotein of apparent Mr = 140,000 located in secretory storage granules of platelets and vascular endothelial cells. When these cells are activated, GMP-140 redistributes from the membrane of the granules to the plasma membrane. To gain insight into the potential function of GMP-140, we examined aspects of its structure and biosynthesis. The amino acid composition of platelet GMP-140 revealed elevated numbers of cystinyl (6.1%), prolinyl (7.2%), and tryptophanyl (2.1%) residues. GMP-140 contained 28.8% carbohydrate by weight, distributed among N-acetylneuraminic acid, neutral sugar, and N-acetylglucosamine residues. Enzymatic removal of N-linked oligosaccarides reduced the protein's apparent Mr by more than 50,000. The biosynthesis of GMP-140 in HEL cells, which share biochemical features with megakaryocytes, was studied by pulse-chase labeling with [35S]cysteine followed by immunoprecipitation. HEL cells synthesized a heterogeneous GMP-140 precursor of 98-125 kDa which converted to a mature 140-kDa form within 40-60 min. Removal of high mannose oligosaccarides by endo-beta-N-acetylglucosaminidase H treatment reduced the apparent Mr of the precursor but not the mature protein. Tunicamycin-treated HEL cells synthesized three to four precursors of 80-92 kDa, suggesting the possibility of heterogeneity of GMP-140 at the protein level. Exposure of activated platelets to proteases followed by Western blotting indicated that most of the mass of GMP-140 was located on the extracytoplasmic side of the membrane. Our studies indicate that GMP-140 is a cysteine-rich, heavily glycosylated protein with a large extracytoplasmic domain. These features are compatible with a receptor function for the molecule when it is exposed on the surface of activated platelets and endothelial cells.  相似文献   

10.
The adhesion of polymorphonuclear leukocytes (PMNs) to vascular endothelial cells (EC) is an early and fundamental event in acute inflammation. This process requires the regulated expression of molecules on both the EC and PMN. EC stimulated with histamine or thrombin coexpress two proadhesive molecules within minutes: granule membrane protein 140 (GMP-140), a member of the selectin family, and platelet-activating factor (PAF), a biologically active phospholipid. Coexpression of GMP-140 and PAF is required for maximal PMN adhesion and the two molecules act in a cooperative fashion. The component of adhesion mediated by EC-associated PAF requires activation of CD11/CD18 integrins on the PMN and binding of these heterodimers to counterreceptors on the EC. GMP-140 also binds to a receptor on the PMN; however, it tethers the PMN to the EC without requiring activation of CD11/CD18 integrins. This component of the adhesive interaction is blocked by antibodies to GMP-140 or by GMP-140 in the fluid phase. Experiments with purified GMP-140 indicate that binding to its receptor on the PMN does not directly induce PMN adhesiveness but that it potentiates the CD11/CD18-dependent adhesive response to PAF by a mechanism that involves events distal to the PAF receptor. Tethering of the PMN to the EC by GMP-140 may also be required for efficient interaction of PAF with its receptor on the PMN. These observations define a complex cell recognition system in which tethering of PMNs by a selectin, GMP-140, facilitates juxtacrine activation of the leukocytes by a signaling molecule, PAF. The latter event recruits the third component of the adhesive interaction, the CD11/CD18 integrins.  相似文献   

11.
R P McEver 《Blood cells》1990,16(1):73-80; discussion 80-3
GMP-140 is an integral membrane glycoprotein with an apparent Mr of 140,000 located in secretory granules of human platelets and endothelial cells. When these cells are stimulated, the protein is rapidly redistributed to the plasma membrane; therefore, monoclonal antibodies to GMP-140 are useful markers of activated platelets and endothelium. GMP-140 is cysteine-rich and heavily glycosylated. The cDNA-derived amino acid sequence indicates that it contains a number of modular domains that are likely to fold independently. Beginning at the N-terminus, these comprise a "lectin" domain, an "EGF" domain, nine tandem consensus repeats similar to those in complement-binding proteins, a transmembrane domain, and a cytoplasmic tail. Some cDNAs also predict variant forms of GMP-140, including a putative soluble form lacking the transmembrane domain that appears to arise from alternative splicing of mRNA. The domain organization of GMP-140 is strikingly similar to two other vascular cell surface structures: ELAM-1, a cytokine-inducible endothelial cell receptor that binds neutrophils, and a lymphocyte-homing receptor that mediates the adherence of lymphocytes to high endothelial venules of peripheral lymph nodes. These "selectins" constitute a new gene family of receptors with related structure and potentially related function.  相似文献   

12.
Activated platelets and endothelium surface express the cell adhesion molecule P-selectin (CD62P), which plays an important role in mediating interactions with leukocytes. Increased levels of a functional soluble form of P-selectin (sP-selectin) have been reported in several pathological states but it is not clear whether this circulating sP-selectin originates from platelets and/or endothelial cells. Here we describe the concurrent kinetics of intracellular storage, surface expression and release of platelet P-selectin induced by thrombin or the protein kinase C activator PMA. Platelet activation with submaximal concentrations of thrombin (0.1 U/ml) resulted in a rapid decrease of intracellular P-selectin. This decrease of intracellular P-selectin concurred with a gradual increase of surface expression and an initial increase of sP-selectin. Our results indicate that intracellular stores of P-selectin were only partly mobilized upon activation with submaximal concentrations of thrombin. A high concentration of thrombin (1.0 U/ml) induced a rapid and nearly total decrease of intracellular stores and a more pronounced, but transient, increase of surface expression. The release of P-selectin was fast and occurred during the initial activation phase. The NO donor SNAP inhibited both surface expression and release of platelet P-selectin in a similar manner. PMA (0.1–1.01 µM) mediated a more slow, gradual and sustained surface expression and release of P-selectin than thrombin. Thus, surface expression and release of platelet P-selectin show different kinetics depending on the mode of activation.  相似文献   

13.
The initial step in extravasation of neutrophils (polymorphonuclear leukocytes [PMNs]) to the extravascular space is adherence to the endothelium. We examined the effect of oxidants on this process by treating human endothelial cells with H2O2, t-butylhydroperoxide, or menadione. This resulted in a surface adhesive for PMN between 1 and 4 h after exposure. The oxidants needed to be present only for a brief period at the initiation of the assay. Adhesion was an endothelial cell-dependent process that did not require an active response from the PMN. The adhesive molecule was not platelet-activating factor, which mediates PMN adherence when endothelial cells are briefly exposed to higher concentrations of H2O2 (Lewis, M. S., R. E. Whatley, P. Cain, T. M. McIntyre, S. M. Prescott, and G. A. Zimmerman. 1988. J. Clin. Invest. 82:2045-2055), nor was it ELAM-1, an adhesive glycoprotein induced by cytokines. Oxidant-induced adhesion did not require protein synthesis, was inhibited by antioxidants, and, when peroxides were the oxidants, was inhibited by intracellular iron chelators. Granule membrane protein-140 (GMP-140) is a membrane-associated glycoprotein that can be translocated from its intracellular storage pool to the surface of endothelial cells where it acts as a ligand for PMN adhesion (Geng, J.-G., M. P. Bevilacqua, K. L. Moore, T. M. McIntyre, S. M. Prescott, J. M. Kim, G. A. Bliss, G. A. Zimmerman, and R. P. McEver. 1990. Nature (Lond). 343:757-760). We found that endothelial cells exposed to oxidants expressed GMP-140 on their surface, and that an mAb against GMP-140 or solubilized GMP-140 completely blocked PMN adherence to oxidant-treated endothelial cells. Thus, exposure of endothelial cells to oxygen radicals induces the prolonged expression of GMP-140 on the cell surface, which results in enhanced PMN adherence.  相似文献   

14.
GMP-140 is a rapidly inducible receptor for neutrophils and monocytes expressed on activated platelets and endothelial cells. It is a member of the selectin family of lectin-like cell surface molecules that mediate leukocyte adhesion. We used a radioligand binding assay to characterize the interaction of purified GMP-140 with human neutrophils. Unstimulated neutrophils rapidly bound [125I]GMP-140 at 4 degrees C, reaching equilibrium in 10-15 min. Binding was Ca2+ dependent, reversible, and saturable at 3-6 nM free GMP-140 with half-maximal binding at approximately 1.5 nM. Receptor density and apparent affinity were not altered when neutrophils were stimulated with 4 beta-phorbol 12-myristate 13-acetate. Treatment of neutrophils with proteases abolished specific binding of [125I]GMP-140. Binding was also diminished when neutrophils were treated with neuraminidase from Vibrio cholerae, which cleaves alpha 2-3-, alpha 2-6-, and alpha 2-8-linked sialic acids, or from Newcastle disease virus, which cleaves only alpha 2-3- and alpha 2-8-linked sialic acids. Binding was not inhibited by an mAb to the abundant myeloid oligosaccharide, Lex (CD15), or by the neoglycoproteins Lex-BSA and sialyl-Lex-BSA. We conclude that neutrophils constitutively express a glycoprotein receptor for GMP-140, which contains sialic acid residues that are essential for function. These findings support the concept that GMP-140 interacts with leukocytes by a lectin-like mechanism.  相似文献   

15.
GMP-140 is a membrane glycoprotein located in secretory granules of platelets and endothelium. When these cells are activated by agonists such as thrombin, GMP-140 is rapidly translocated to the plasma membrane. GMP-140, along with ELAM-1 and the peripheral lymph node homing receptor, defines the selectin family of structurally related molecules that regulate interactions of leukocytes with the blood vessel wall. Each of these molecules contains an N-terminal lectin-like domain, followed by an EGF-like region, a series of consensus repeats related to those in complement-binding proteins, a transmembrane domain, and a short cytoplasmic tail. The genomic structures of the selectins suggest that they arose by duplication and modification of exons encoding specific structural domains. GMP-140 is a receptor for neutrophils and monocytes when it is expressed on activated platelets and endothelium. This property facilitates rapid adhesion of leukocytes to endothelium at regions of tissue injury as well as platelet-leukocyte interactions at sites of inflammation and hemorrhage. Like other leukocyte adhesion molecules, GMP-140 may also participate in pathologic inflammation, thrombosis, and tumor metastasis. Confirmation of such pathologic roles may lead to design of new drugs that block adhesive receptor function in human disease.  相似文献   

16.
G I Johnston  R G Cook  R P McEver 《Cell》1989,56(6):1033-1044
GMP-140 is an integral membrane glycoprotein found in secretory granules of platelets and endothelial cells. After cellular activation, it is rapidly redistributed to the plasma membrane. The cDNA-derived primary structure of GMP-140 predicts a cysteine-rich protein with multiple domains, including a "lectin" region, an "EGF" domain, nine tandem consensus repeats related to those in complement-binding proteins, a transmembrane domain, and a short cytoplasmic tail. Some cDNAs also predict a soluble protein with a deleted transmembrane segment. The domain organization of GMP-140 is similar to that of ELAM-1, a cytokine-inducible endothelial cell receptor that binds neutrophils. This similarity suggests that GMP-140 belongs to a new family of inducible receptors with related structure and function on vascular cells.  相似文献   

17.
18.
Summary Platelets and coagulation are involved in the pathogenesis of blood-borne metastases. The aim of this study is to obtain more information about the mechanisms involved in the initial adhesion of tumor cells to endothelial cells. In short term experiments with tumor cells, suspended in the medium of cultured endothelial cells, we tested whether addition of both platelets and thrombin cause more tumor cell adhesion to endothelial cells, than when either platelets or thrombin are acting alone. HeLa cells or HT29 cells, prelabeled with radioactive 51Cr, human platelets, and thrombin were added to human endothelial cell cultures. Following 15 min of shaking at 37° C, the percentage of tumor cell adhesion was calculated. The percentages of adhering tumor cells with the presence of both platelets and thrombin were greatly increased compared to controls. Addition of hirudin 2 min before thrombin lowered the adhesion percentage of tumor cells. Hirudin added immediately before and 2 min after thrombin gave only minor effects. When the endothelium was treated with superoxide dismutase, catalase, and mannitol, the adhesion of tumor cells was lowered with catalase and superoxide dismutase. The cause of tumor cell-endothelial cell interaction is probably complex. Our results show that activated platelets enhance the tumor cell adhesion, and that generation of active oxygen species may be important in the initial phase of the interaction.  相似文献   

19.
本文利用血小板表面外露的GMP-140为血小板分泌反应的特异性标志,通过放射免疫分析法定量测定血小板表面GMP-140分子数,研究了细胞骨架抑制剂对凝血酶诱导血小板分泌反应的影响。结果表明,凝血酶激活使血小板表面GMP-140的外露明显增加,反应迅速,并在一定范围内呈剂量和时间依赖性;而ADP刺激则几乎不引起GMP-140外露的增加。凝血酶激活前加入不同的细胞骨架抑制剂处理可产生不同的效应:细胞松驰素B(肌动蛋白微丝抑制剂)可明显上调凝血酶诱导的GMP-140外露;而秋水仙素(微管抑制剂)则下调GMP-140的外露;两者同时处理仍呈现明显的上调作用。提示凝血酶作为一种强激活剂,不仅可通过受体-G蛋白-第二信使的途径启动血小板分泌反应,而且可能经诱导肌动蛋白微丝的形成对分泌反应起反馈性负调节作用。微管的存在则可能对凝血酶诱导的分泌反应起促进作用。虽然两种细胞骨架的作用相反,但以微丝的作用为主,两者间无相互拮抗现象。  相似文献   

20.
During platelet secretion granule membrane glycoproteins are translocated to the plasma membrane. We report here the biochemical and immunohistochemical characterization of a panel of platelet-secretion-specific, CD62 and CD63 monoclonal antibodies (MoAb), which we raised to thrombin-activated platelets. The CD62 MoAb identify the alpha-granule membrane protein GMP-140, also designated platelet activation-dependent granule external membrane protein (PADGEM). The number of epitopes on thrombin-activated platelets ranged from 15,000 to 20,000. The CD63 MoAb recognize a 30-60 kDalton integral membrane protein of lysosomes. Due to its distinct localization, we have designated the CD63 antigen lysosome integral membrane protein, CD63 (LIMP-CD63). The number of epitopes on thrombin-activated platelets ranged from 9000 to 11,000. Expression of GMP-140, a member of the Selectin family (also referred as the LEC-CAM family) of adhesion molecules, and LIMP-CD63 was examined on human spleen, thymus and lymph node by immunohistochemistry. Both GMP-140 and LIMP-CD63 showed a wide distribution in lymphoid tissues; vascular endothelial cells and tissue compartments that were readily accessible to blood-borne components were uniformly positive for GMP-140 and LIMP-CD63. Furthermore, LIMP-CD63 was expressed in polymorphonuclear granulocytes and macrophages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号