首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The rat liver mitochondrial phosphate transporter contains a 44-amino acid presequence. The role of this presequence is not clear since the ADP/ATP carrier and the brown fat uncoupling protein, related members of a family of inner membrane anion transporters, lack a presequence and contain targeting information within the mature protein. Here, we present evidence that the rat liver mitochondrial phosphate transporter can be synthesized in vitro, imported into mitochondria, and processed to a protein of Mr 33,000. Import requires the membrane potential and external nucleotide triphosphate. The presequence inserts into the outer mitochondrial membrane, and import proceeds via a process similar to other proteins destined for the inner membrane or matrix. A mutant phosphate transporter lacking 35 amino acids at the NH2 terminus of the presequence has little capacity for mitochondrial import. The rat liver phosphate transporter is also imported and processed by rat kidney mitochondria and by mitochondria from the yeast Saccharomyces cerevisiae. A site-directed mutation of the N-ethyl-maleimide reactive cysteine 41 does not affect import or processing. The results presented show that optimal import of the mitochondrial phosphate transporter, unlike the ADP/ATP carrier and the brown fat uncoupling protein, is dependent on a presequence. As these carriers are believed to have evolved from a single gene, it seems likely that the H+/Pi carrier, known to be present in prokaryotes, appeared first and that subsequent evolutionary events leading to the other anion carriers eliminated the presequence.  相似文献   

2.
The ADP/ATP carrier (AAC) is the major representative of the inner membrane carrier proteins of mitochondria that are synthesized without cleavable presequences. The characterization of the import pathway of AAC into mitochondria has mainly depended on an operational staging system. Here, we introduce two approaches for analyzing the import of AAC, blue native electrophoresis and folding-induced translocation arrest, that allow a functional staging of AAC transport across the outer membrane. (i) Blue native electrophoresis permits a direct monitoring of the receptor stage of AAC and its chase into mitochondria. Binding to this stage requires the receptor protein Tom70 but not Tom37 or Tom20. (ii) A fusion protein between AAC and dihydrofolate reductase can be selectively arrested in the general import pore complex of the outer membrane by ligand induced folding of the passenger protein. Cross-linking demonstrates that the arrested preprotein is in close contact not only with several receptors and Tim10 but also with the channel protein Tom40, providing the first direct evidence that cleavable preproteins and carrier preproteins interact with the same outer membrane channel. The staging system presented here permits a molecular dissection of AAC transport across the outer mitochondrial membrane, relates it to functional units of the translocases, and indicates a coordinated and successive cooperation of distinct translocase subcomplexes during transfer of the preprotein.  相似文献   

3.
Tom22 is an essential component of the protein translocation complex (Tom complex) of the mitochondrial outer membrane. The N-terminal domain of Tom22 functions as a preprotein receptor in cooperation with Tom20. The role of the C-terminal domain of Tom22, which is exposed to the intermembrane space (IMS), in its own assembly into the Tom complex and in the import of other preproteins was investigated. The C-terminal domain of Tom22 is not essential for the targeting and assembly of this protein, as constructs lacking part or all of the IMS domain became imported into mitochondria and assembled into the Tom complex. Mutant strains of Neurospora expressing the truncated Tom22 proteins were generated by a novel procedure. These mutants displayed wild-type growth rates, in contrast to cells lacking Tom22, which are not viable. The import of proteins into the outer membrane and the IMS of isolated mutant mitochondria was not affected. Some but not all preproteins destined for the matrix and inner membrane were imported less efficiently. The reduced import was not due to impaired interaction of presequences with their specific binding site on the trans side of the outer membrane. Rather, the IMS domain of Tom22 appears to slightly enhance the efficiency of the transfer of these preproteins to the import machinery of the inner membrane.  相似文献   

4.
The preprotein translocase of the outer mitochondrial membrane is a multi-subunit complex with receptors and a general import pore. We report the molecular identification of Tom7, a small subunit of the translocase that behaves as an integral membrane protein. The deletion of TOM7 inhibited the mitochondrial import of the outer membrane protein porin, whereas the import of preproteins destined for the mitochondrial interior was impaired only slightly. However, protein import into the mitochondrial interior was strongly inhibited when it occurred in two steps: preprotein accumulation at the outer membrane in the absence of a membrane potential and subsequent further import after the re-establishment of a membrane potential. The delay of protein import into tom7delta mitochondria seemed to occur after the binding of preproteins to the outer membrane receptor sites. A lack of Tom7 stabilized the interaction between the receptors Tom20 and Tom22 and the import pore component Tom40. This indicated that Tom7 exerts a destabilizing effect on part of the outer membrane translocase, whereas Tom6 stabilizes the interaction between the receptors and the import pore. Synthetic growth defects of the double mutants tom7delta tom20delta and tom7delta tom6delta provided genetic evidence for the functional relationship of Tom7 with Tom20 and Tom6. These results suggest that (i) Tom7 plays a role in sorting and accumulation of the preproteins at the outer membrane, and (ii) Tom7 and Tom6 perform complementary functions in modulating the dynamics of the outer membrane translocase.  相似文献   

5.
Mitochondrial preproteins synthesized in the cytosol are imported through the mitochondrial outer membrane by the translocase of the outer mitochondrial membrane (TOM) complex. Tom40 is the major component of the complex and is essential for cell viability. We generated 21 different mutations in conserved regions of the Neurospora crassa Tom40 protein. The mutant genes were transformed into a tom40 null nucleus maintained in a sheltered heterokaryon, and 17 of the mutant genes gave rise to viable strains. All mutations reduced the efficiency of the altered Tom40 molecules to assemble into the TOM complex. Mitochondria isolated from seven of the mutant strains had defects for importing mitochondrial preproteins. Only one strain had a general import defect for all preproteins examined. Another mutation resulted in defects in the import of a matrix-destined preprotein and an outer membrane beta-barrel protein, but import of the ADP/ATP carrier to the inner membrane was unaffected. Five strains showed deficiencies in the import of beta-barrel proteins. The latter results suggest that the TOM complex distinguishes beta-barrel proteins from other classes of preprotein during import. This supports the idea that the TOM complex plays an active role in the transfer of preproteins to subsequent translocases for insertion into the correct mitochondrial subcompartment.  相似文献   

6.
The essential gene TIM44 encodes a subunit of the inner mitochondrial membrane preprotein translocase that forms a complex with the matrix heat-shock protein Hsp70. The specific role of Tim44 in protein import has not yet been defined because of the lack of means to block its function. Here we report on a Saccharomyces cerevisiae mutant allele of TIM44 that allows selective and efficient inactivation of Tim44 in organello. Surprisingly, the mutant mitochondria are still able to import preproteins. The import rate is only reduced by approximately 30% compared with wild-type as long as the preproteins do not carry stably folded domains. Moreover, the number of import sites is not reduced. However, the mutant mitochondria are strongly impaired in pulling folded domains of preproteins close to the outer membrane and in promoting their unfolding. Our results demonstrate that Tim44 is not an essential structural component of the import channel, but is crucial for import of folded domains. We suggest that the concerted action of Tim44 and mtHsp70 drives unfolding of preproteins and accelerates translocation of loosely folded preproteins. While mtHsp70 is essential for import of both tightly and loosly folded preproteins, Tim44 plays a more specialized role in translocation of tightly folded domains.  相似文献   

7.
Mitochondrial protein import is thought to involve the sequential interaction of preproteins with binding sites on cis and trans sides of the membranes. For translocation across the outer membrane, preproteins first interact with the cytosolic domains of import receptors (cis) and then are translocated through a general import pore, in a process proposed to involve binding to a trans site on the intermembrane space (IMS) side. Controversial results have been reported for the role of the IMS domain of the essential outer membrane protein Tom22 in formation of the trans site. We show with different mutant mitochondria that a lack of the IMS domain only moderately reduces the direct import of preproteins with N-terminal targeting sequences. The dependence of import on the IMS domain of Tom22 is significantly enhanced by removing the cytosolic domains of import receptors or by performing import in two steps, i.e., accumulation of a preprotein at the outer membrane in the absence of a membrane potential (delta psi) and subsequent import after reestablishment of a delta psi. After the removal of cytosolic receptor domains, two-step import of a cleavable preprotein strictly requires the IMS domain. In contrast, preproteins with internal targeting information do not depend on the IMS domain of Tom22. We conclude that the negatively charged IMS domain of Tom22 functions as a trans binding site for preproteins with N-terminal targeting sequences, in agreement with the acid chain hypothesis of mitochondrial protein import.  相似文献   

8.
The ADP/ATP carrier (AAC) is a major representative of mitochondrial preproteins lacking an N-terminal presequence. AAC contains targeting information in each of its three modules, which has led to a search for the dominant targeting region. An alternative, not yet tested model would be that several distinct targeting signals function simultaneously in import of the preprotein. We report that the three AAC modules cooperate in binding to the receptor Tom70 such that three Tom70 dimers are recruited to one preprotein. The modules are transferred to the import pore in a stepwise manner and cooperate again in the accumulation of AAC in the general import pore complex. AAC can cross the outer membrane with an internal segment first, i.e. in a loop formation. Each module of AAC is required for dimerization in the inner membrane. We propose a new concept for import of the hydrophobic carrier proteins into mitochondria where multiple signals cooperate in receptor recruitment, outer membrane translocation via loop formation and assembly in the inner membrane.  相似文献   

9.
《The Journal of cell biology》1993,121(6):1233-1243
Nuclear-encoded proteins destined for mitochondria must cross the outer or both outer and inner membranes to reach their final sub- mitochondrial locations. While the inner membrane can translocate preproteins by itself, it is not known whether the outer membrane also contains an endogenous protein translocation activity which can function independently of the inner membrane. To selectively study the protein transport into and across the outer membrane of Neurospora crassa mitochondria, outer membrane vesicles were isolated which were sealed, in a right-side-out orientation, and virtually free of inner membranes. The vesicles were functional in the insertion and assembly of various outer membrane proteins such as porin, MOM19, and MOM22. Like with intact mitochondria, import into isolated outer membranes was dependent on protease-sensitive surface receptors and led to correct folding and membrane integration. The vesicles were also capable of importing a peripheral component of the inner membrane, cytochrome c heme lyase (CCHL), in a receptor-dependent fashion. Thus, the protein translocation machinery of the outer mitochondrial membrane can function as an independent entity which recognizes, inserts, and translocates mitochondrial preproteins of the outer membrane and the intermembrane space. In contrast, proteins which have to be translocated into or across the inner membrane were only specifically bound to the vesicles, but not imported. This suggests that transport of such proteins involves the participation of components of the intermembrane space and/or the inner membrane, and that in these cases the outer membrane translocation machinery has to act in concert with that of the inner membrane.  相似文献   

10.
Biogenesis of mitochondria requires import of several hundreds of different nuclear-encoded preproteins needed for mitochondrial structure and function. Import and sorting of these preproteins is a multistep process facilitated by complex proteinaceous machineries located in the mitochondrial outer and inner membranes. The translocase of the mitochondrial outer membrane, the TOM complex, comprises receptors which specifically recognize mitochondrial preproteins and a protein conducting channel formed by TOM40. The TOM complex is able to insert resident proteins into the outer membrane and to translocate proteins into the intermembrane space. For import of inner membrane or matrix proteins, the TOM complex cooperates with translocases of the inner membrane, the TIM complexes. During the past 30 years, intense research on fungi enabled the identification and mechanistic characterization of a number of different proteins involved in protein translocation. This review focuses on the contributions of the filamentous fungus Neurospora crassa to our current understanding of mitochondrial protein import, with special emphasis on the structure and function of the TOM complex.  相似文献   

11.
The precursor of the mitochondrial inner membrane protein ADP/ATP carrier is cytoplasmically synthesized without an amino-terminal peptide extension. We constructed a truncated precursor lacking the 103 amino acids from the amino terminus (about a third of the protein). Import of the truncated precursor into mitochondria showed the import characteristics of the authentic precursor, including nucleoside triphosphate dependence, requirement for a protease-sensitive component on the mitochondrial surface, two-step specific binding to the outer membrane, and membrane potential-dependent translocation into the inner membrane. We conclude that, in contrast to all other mitochondrial precursor proteins studied so far, domains of the ADP/ATP carrier distant from the amino terminus can carry specific targeting information for transport into mitochondria.  相似文献   

12.
A multisubunit complex in the mitochondrial outer membrane is responsible for targeting and membrane translocation of nuclear-encoded preproteins. This receptor complex contains two import receptors, a general insertion pore and the protein Mom22. It was unknown if Mom22 directly interacts with preproteins, and two views existed about the possible functions of Mom22: a central role in transfer of preproteins from both receptors to the general insertion pore or a more limited function dependent on the presence of the receptor Mom19. For this report, we identified and cloned Saccharomyces cerevisiae MOM22 and investigated whether it plays a direct role in targeting of preproteins. A preprotein accumulated at the mitochondrial outer membrane was cross-linked to Mom22. The cross-linking depended on the import stage of the preprotein. Overexpression of Mom22 suppressed the respiratory defect of yeast cells lacking Mom19 and increased preprotein import into mom19 delta mitochondria, demonstrating that Mom22 can function independently of Mom19. Overexpression of Mom22 even suppressed the lethal phenotype of a double deletion of the two import receptors known so far (mom19 delta mom72 delta). Deletion of the MOM22 gene was lethal for yeast cells, identifying Mom22 as one of the few mitochondrial membrane proteins essential for fermentative growth. These results suggest that Mom22 plays an essential role in the mitochondrial receptor complex. It directly interacts with preproteins in transit and can perform receptor-like activities.  相似文献   

13.
Most mitochondrial proteins are transported from the cytosol into the or-ganelle. Due to the division of mitochondria into an outer and inner membrane, an inter-membrane space and a matrix, an elaborated system for recognition and transport of preproteins has evolved. The translocase of the outer mitochondrial membrane (TOM) and the translocases of the inner mitochondrial membrane (TIM) mediate these processes. Receptor proteins on the cytosolic face of mitochondria recognize the cargo proteins and transfer them to the general import pore (GIP) of the outer membrane. Following the passage of preproteins through the outer membrane they are transported with the aid of the TIM23 complex into either the matrix, inner membrane, or intermembrane space. Some preprotein families utilize the TIM22 complex for their insertion into the inner membrane. The identification of protein components, which are involved in these transport processes, as well as significant insights into the molecular function of some of them, has been achieved in recent years. Moreover, we are now approaching a new era in which elaborated techniques have already allowed and will enable us to gather information about the TOM and TIM complexes on an ultrastructural level.  相似文献   

14.
Distinct steps in the import of ADP/ATP carrier into mitochondria   总被引:42,自引:0,他引:42  
Transport of the precursor to the ADP/ATP carrier from the cytosol into the mitochondrial inner membrane was resolved into several consecutive steps. The precursor protein was trapped at distinct stages of the import pathway and subsequently chased to the mature form. In a first reaction, the precursor interacts with a protease-sensitive component on the mitochondrial surface. It then reaches intermediate sites in the outer membrane which are saturable and where it is protected against proteases. This translocation intermediate can be extracted at alkaline pH. We suggest that it is anchored to the membrane by a so far unknown proteinaceous component. The membrane potential delta psi-dependent entrance of the ADP/ATP carrier into the inner membrane takes place at contact sites between outer and inner membranes. Completion of translocation into the inner membrane can occur in the absence of delta psi. A cytosolic component which is present in reticulocyte lysate and which interacts with isolated mitochondria is required for the specific binding of the precursor to mitochondria.  相似文献   

15.
Whilst investigating whether GTP hydrolysis may be required for the import of preproteins into mitochondria we have found that a GTP-binding protein is located at the contact sites between mitochondrial inner and outer membranes. When mitochondrial outer membranes purified from rat liver were UV-irradiated in the presence of [alpha-32P]GTP, a 52 kDa protein was radiolabelled, whereas [alpha-32P]ATP did not label this protein. GTP-binding proteins were also labelled in the cytosolic and microsomal fractions, but the 52 kDa protein was concentrated in mitochondrial membranes and was the only protein specifically labelled by GTP in these membranes. Fractionation of mitochondrial membrane vesicles into outer membranes, inner membranes and contact sites between outer and inner membranes showed that the GTP-binding activity was highly enriched in contact sites, the location at which preprotein import is believed to occur. A protein of almost identical size was also found to be labelled in mitochondria from yeast.  相似文献   

16.
Most mitochondrial proteins are transported from the cytosol into the organelle. Due to the division of mitochondria into an outer and inner membrane, an intermembrane space and a matrix, an elaborated system for recognition and transport of preproteins has evolved. The translocase of the outer mitochondrial membrane (TOM) and the translocases of the inner mitochondrial membrane (TIM) mediate these processes. Receptor proteins on the cytosolic face of mitochondria recognize the cargo proteins and transfer them to the general import pore (GIP) of the outer membrane. Following the passage of preproteins through the outer membrane they are transported with the aid of the TIM23 complex into either the matrix, inner membrane, or intermembrane space. Some preprotein families utilize the TIM22 complex for their insertion into the inner membrane. The identification of protein components, which are involved in these transport processes, as well as significant insights into the molecular function of some of them, has been achieved in recent years. Moreover, we are now approaching a new era in which elaborated techniques have already allowed and will enable us to gather information about the TOM and TIM complexes on an ultrastructural level.  相似文献   

17.
Mitochondrial biogenesis utilizes a complex proteinaceous machinery for the import of cytosolically synthesized preproteins. At least three large multisubunit protein complexes, one in the outer membrane and two in the inner membrane, have been identified. These translocase complexes cooperate with soluble proteins from the cytosol, the intermembrane space and the matrix. The translocation of presequence-containing preproteins through the outer membrane channel includes successive electrostatic interactions of the charged mitochondrial targeting sequence with a chain of import components. Translocation across the inner mitochondrial membrane utilizes the energy of the proton motive force of the inner membrane and the hydrolysis of ATP. The matrix chaperone system of the mitochondrial heat shock protein 70 forms an ATP-dependent import motor by interaction with the polypeptide chain in transit and components of the inner membrane translocase. The precursors of integral inner membrane proteins of the metabolite carrier family interact with newly identified import components of the intermembrane space and are inserted into the inner membrane by a second translocase complex. A comparison of the full set of import components between the yeast Sacccharomyces cerevisiae and the nematode Caenorhabditis elegans demonstrates an evolutionary conservation of most components of the mitochondrial import machinery with a possible greater divergence for the import pathway of the inner membrane carrier proteins.  相似文献   

18.
Mitochondrial biogenesis utilizes a complex proteinaceous machinery for the import of cytosolically synthesized preproteins. At least three large multisubunit protein complexes, one in the outer membrane and two in the inner membrane, have been identified. These translocase complexes cooperate with soluble proteins from the cytosol, the intermembrane space and the matrix. The translocation of presequence-containing preproteins through the outer membrane channel includes successive electrostatic interactions of the charged mitochondrial targeting sequence with a chain of import components. Translocation across the inner mitochondrial membrane utilizes the energy of the proton motive force of the inner membrane and the hydrolysis of ATP. The matrix chaperone system of the mitochondrial heat shock protein 70 forms an ATP-dependent import motor by interaction with the polypeptide chain in transit and components of the inner membrane translocase. The precursors of integral inner membrane proteins of the metabolite carrier family interact with newly identified import components of the intermembrane space and are inserted into the inner membrane by a second translocase complex. A comparison of the full set of import components between the yeast Sacccharomyces cerevisiae and the nematode Caenorhabditis elegans demonstrates an evolutionary conservation of most components of the mitochondrial import machinery with a possible greater divergence for the import pathway of the inner membrane carrier proteins.  相似文献   

19.
The mitochondrial heat shock protein Hsp70 (mtHsp70) is essential for driving translocation of preproteins into the matrix. Two models, trapping and pulling by mtHsp70, are discussed, but positive evidence for either model has not been found so far. We have analyzed a mutant mtHsp70, Ssc1-2, that shows a reduced interaction with the membrane anchor Tim44, but an enhanced trapping of preproteins. Unexpectedly, at a low inner membrane potential, ssc1-2 mitochondria imported loosely folded preproteins more efficiently than wild-type mitochondria. The import of a tightly folded preprotein, however, was not increased in ssc1-2 mitochondria. Thus, enhanced trapping by mtHsp70 stimulates the import of loosely folded preproteins and reduces the dependence on the import-driving activity of the membrane potential, directly demonstrating that trapping is one of the molecular mechanisms of mtHsp70 action.  相似文献   

20.
The majority of mitochondrial proteins are synthesized with amino-terminal signal sequences. The presequence translocase of the inner membrane (TIM23 complex) mediates the import of these preproteins. The essential TIM23 core complex closely cooperates with partner protein complexes like the presequence translocase-associated import motor and the respiratory chain. The inner mitochondrial membrane also contains a large number of metabolite carriers, but their association with preprotein translocases has been controversial. We performed a comprehensive analysis of the TIM23 interactome based on stable isotope labeling with amino acids in cell culture. Subsequent biochemical studies on identified partner proteins showed that the mitochondrial ADP/ATP carrier associates with the membrane-embedded core of the TIM23 complex in a stoichiometric manner, revealing an unexpected connection of mitochondrial protein biogenesis to metabolite transport. Our data indicate that direct TIM23-AAC coupling may support preprotein import into mitochondria when respiratory activity is low.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号