首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

The coat colour in mammals is determined by the relative amounts of eumelanin (black/brown) and phaeomelanin (red/yellow), produced in melanocytes, which are controlled by melanocyte stimulating hormone receptor (MSH-R). Melanocyte stimulating hormone receptor is activated by α-melanocyte-stimulating hormone (α-MSH). Stimulated MSH-R activates adenylyl cyclase (AC), thereby increasing the amount of cyclic AMP in the cell, which activates the enzyme tyrosinase resulting in eumelanin synthesis. In this study the complete coding sequences of five alleles of the MSH-R gene found in Holstein, Red Holstein, Simmental, and Brown Swiss cattle were cloned into a mammalian expression vector and transfected into human embryonic kidney (HEK) 293 cells. The expressed receptors were analyzed for their ability to increase intracellular cAMP in response to stimulation by α-MSH. The recessive red allele (e) found in Red Holstein and Simmental and the dominant black allele (ED) found in Holstein were unresponsive to a wide range of α-MSH concentrations. Two alleles from Brown Swiss (Ed1, Ed2) and one allele found in the Simmental breed (ef) responded to stimulation by α-MSH in a dose-dependent manner. When compared to Ed1 and Ed2, the cells transfected with the ef MSH-R allele, however, reached the corresponding intracellular cAMP concentrations at a 10-fold higher concentration of α-MSH. In conjunction with the mode of inheritance of coat colour, the results indicate that the e MSH-R allele is a non-functional receptor, ED is constitutively activated receptor, and Ed1 and Ed2 are hormonally activated receptors. The delay in ef MSH-R response may explain the similarity between the e and ef phenotypes.  相似文献   

2.
Seven alleles of the chicken melanocortin (MC) 1 receptor were cloned into expression vectors, expressed in mammalian cells and pharmacologically characterized. Four of the clones e(+R), e(+B&D), e(wh)/e(y), E(Rfayoumi) gave receptors to which melanocortin stimulating hormone (alpha-MSH) and NDP-MSH bound with similar IC50 values and responded to alpha-MSH by increasing intracellular cAMP levels in a dose-dependent manner. Three of the cMC1 receptors; e(b), E and E(R), did not show any specific binding to the radioligand, but were found to be constitutively active in the cAMP assay. The E and E(R) alleles are associated with black feather colour in chicken while the eb allele gives rise to brownish pigmentation. The three constitutively active receptors share a mutation of Glu to Lys in position 92. This mutation was previously found in darkly pigmented sombre mice, but constitutively active MC receptors have not previously been shown in any nonmammalian species. We also inserted the Glu to Lys mutation in the human MC1 and MC4 receptors. In contrast with the chicken clones, the hMC1-E94K receptor bound to the ligand, but was still constitutively active independently of ligand concentration. The hMC4-E100K receptor did not bind to the MSH ligand and was not constitutively active. The results indicate that the structural requirements that allow the receptor to adapt an active conformation without binding to a ligand, as a consequence of this E/K mutation, are not conserved within the MC receptors. The results are discussed in relationship to feather colour in chicken, molecular receptor structures and evolution. We suggest that properties for the 'E92K switch' mechanism may have evolved in an ancestor common to chicken and mammals and were maintained over long time periods through evolutionary pressure, probably on closely linked structural features.  相似文献   

3.
Agouti: from mouse to man, from skin to fat   总被引:25,自引:0,他引:25  
The agouti protein regulates pigmentation in the mouse hair follicle producing a black hair with a subapical yellow band. Its effect on pigmentation is achieved by antagonizing the binding of alpha-melanocyte stimulating hormone (alpha-MSH) to melanocortin 1 receptor (Mc1r), switching melanin synthesis from eumelanin (black/brown) to phaeomelanin (red/yellow). Dominant mutations in the non-coding region of mouse agouti cause yellow coat colour and ectopic expression also results in obesity, type 11 diabetes, increased somatic growth and tumourigenesis. At least some of these pleiotropic effects can be explained by antagonism of other members of the melanocortin receptor family by agouti protein. The yellow coat colour is the result of agouti chronically antagonizing the binding of alpha-MSH to Mc1r and the obese phenotype results from agouti protein antagonizing the binding of alpha-MSH to Mc3r and/or Mc4r. Despite the existence of a highly homologous agouti protein in humans, agouti signal protein (ASIP), its role has yet to be defined. However it is known that human ASIP is expressed at highest levels in adipose tissue where it may antagonize one of the melanocortin receptors. The conserved nature of the agouti protein combined with the diverse phenotypic effects of agouti mutations in mouse and the different expression patterns of human and mouse agouti, suggest ASIP may play a role in human energy homeostasis and possibly human pigmentation.  相似文献   

4.
Endogenous prion proteins (PrP) play the central role in the pathogenesis of transmissible spongiform encephalopathies. The carbohydrate N -acetylgalactosamine 4-O sulfotransferase 8 (CHST8) promotes the conversion of the cellular PrPC into the pathogenic PrPd. Six sequence variants within the CHST8 gene were identified by comparative sequencing and genotyped for a sample of 623 animals comprising bovine spongiform encephalopathy (BSE)-affected and healthy control cows representing German Fleckvieh (German Simmental), German Holstein (Holstein-Friesian) and Brown Swiss. Significant differences in the allele, genotype and haplotype frequencies between BSE-affected and healthy cows indicate an association of sequence variant g.37254017G>T with the development of the disease in Brown Swiss cattle.  相似文献   

5.
The melanocyte-stimulating hormone (MSH) receptor has a major function in the regulation of black (eumelanin) versus red (phaeomelanin) pigment synthesis within melanocytes. We report three alleles of the MSH-receptor gene found in cattle. A point mutation in the dominant allele E D gives black coat color, whereas a frameshift mutation, producing a prematurely terminated receptor, in homozygous e/e animals, produces red coat color. The wild-type allele E + produces a variety of colors, reflecting the possibilities for regulating the normal receptor. Microsatellite analysis, RFLP studies, and coat color information were used to localize the MSH-receptor to bovine Chromosome (Chr) 18.  相似文献   

6.
Tyrosinase related protein 1 (TYRP1), which is involved in the coat colour pathway, was mapped to BTA8 between microsatellites BL1080 and BM4006, using a microsatellite in intron 5 of TYRP1. The complete coding sequence of bovine TYRP1 was determined from cDNA derived from skin biopsies of cattle with various colours. Sequence data from exons 2-8 from cattle with diluted phenotypes was compared with that from non-diluted phenotypes. In addition, full-sib families of beef cattle generated by embryo transfer and half-sib families from traditional matings in which coat colour was segregating were used to correlate TYRP1 sequence variants with dilute coat colours. Two non-conservative amino acid changes were detected in Simmental, Charolais and Galloway cattle but these polymorphisms were not associated with diluted shades of black or red, nor with the dun coat colour of Galloway cattle or the taupe brown colour of Braunvieh and Brown Swiss cattle. However, in Dexter cattle all 25 cattle with a dun brown coat colour were homozygous for a H424Y change. One Dexter that was also homozygous Y434 was red because of an "E+/E+" genotype at MC1R which lead to the production of only phaeomelanin. None of the 70 remaining black or red Dexter cattle were homozygous for Y434. This tyrosine mutation was not found in any of the 121 cattle of other breeds that were examined.  相似文献   

7.
The melanocyte-stimulating hormone receptor (MC1-R) is a central regulator of mammalian coat colour, encoded by the extension locus. In cattle, the dominant extension allele E(D) is associated with the production of black pigment in coloured areas. Genotyping of the MC1-R gene in a bull with mosaic expression of red vs. black pigment verified the existence of the E(D) allele, in spite of the fact that the majority of the animal is red coloured. No further mutations were found within the E(D) variant of the MC1-R gene, which was inherited from a completely red mother (genotype E(D)/e).  相似文献   

8.
The concentration of the cytosolic glucocorticoid receptor (GR) was determined in skeletal muscles of calves in order to study possible differences in individual muscles from different parts of the body as well as the influence of sex and breed. In male and female Simmental calves the topographical distribution of GR was similar: the lowest concentrations were seen in abdominal muscle, whereas in neck, shoulder and hindleg the GR concentrations were higher; this difference was more pronounced in male than in female calves. In general, female calves had about 2-fold higher GR concentrations than males. The cytosolic cortisol concentrations were differing neither between individual muscles nor between sexes. The cortisol secretion during a 24-h sampling period 1 week prior to slaughter showed no sex difference. GR concentrations in neck muscle of female calves of four different German cattle breeds (Holstein Friesian, Brown Swiss, Simmental and German Gelbvieh) were rather similar; however, when Brown Swiss with the highest GR levels were compared to Holstein Friesian calves with the lowest concentrations, a significant difference was evident (P < 0.05).  相似文献   

9.
Coat color in Holstein dairy cattle is primarily controlled by the melanocortin 1 receptor (MC1R) gene, a central determinant of black (eumelanin) vs. red/brown pheomelanin synthesis across animal species. The major MC1R alleles in Holsteins are Dominant Black (MC1RD) and Recessive Red (MC1Re). A novel form of dominant red coat color was first observed in an animal born in 1980. The mutation underlying this phenotype was named Dominant Red and is epistatic to the constitutively activated MC1RD. Here we show that a missense mutation in the coatomer protein complex, subunit alpha (COPA), a gene with previously no known role in pigmentation synthesis, is completely associated with Dominant Red in Holstein dairy cattle. The mutation results in an arginine to cysteine substitution at an amino acid residue completely conserved across eukaryotes. Despite this high level of conservation we show that both heterozygotes and homozygotes are healthy and viable. Analysis of hair pigment composition shows that the Dominant Red phenotype is similar to the MC1R Recessive Red phenotype, although less effective at reducing eumelanin synthesis. RNA-seq data similarly show that Dominant Red animals achieve predominantly pheomelanin synthesis by downregulating genes normally required for eumelanin synthesis. COPA is a component of the coat protein I seven subunit complex that is involved with retrograde and cis-Golgi intracellular coated vesicle transport of both protein and RNA cargo. This suggests that Dominant Red may be caused by aberrant MC1R protein or mRNA trafficking within the highly compartmentalized melanocyte, mimicking the effect of the Recessive Red loss of function MC1R allele.  相似文献   

10.
The genetic diversity among Canadienne, Brown Swiss, Holstein, and Jersey cattle was estimated from relationships determined by genotyping 20 distantly related animals in each breed for 15 microsatellites located on separate chromosomes. The Canadienne, Holstein, and Jersey cattle had an average of six alleles per loci compared with five alleles for Brown Swiss. Furthermore, a number of potentially breed-specific alleles were identified. The allele size variance among breeds was similar, but varied considerably among loci. All of the loci studied were equally heterozygous, as were Brown Swiss, Canadienne, and Holstein cattle (0.68-0.69) whereas Jersey cattle showed lower heterozygosity (0.59). The within-breed estimates of genetic distance were greater than zero and significant. The genetic distance between Canadienne and Holstein (0.156), Brown Swiss (0.243), and Jersey (0.235) was negligible, suggesting close relationship. Concurrently, Brown Swiss and Holstein (0.211) cattle also demonstrated close relationship. In contrast, the Jersey breed was genetically distant from the Brown Swiss and Holstein cattle (0.427 and 0.320, respectively). The characterization of Canadienne cattle, as part of the genetic resource conservation effort currently underway in Canada, underscores the difficulty in scientifically establishing unique breeds. Therefore, the need to consider all relevant morphological characteristics and production performance in combination with available cultural, historical, pedigree, and molecular information becomes relevant when identifying breeds for conservation.  相似文献   

11.
Segregation analyses with Gibbs sampling were applied to investigate the mode of inheritance and to estimate the genetic parameters of milk flow of Swiss dairy cattle. The data consisted of 204 397, 655 989 and 40 242 lactation records of milk flow in Brown Swiss, Simmental and Holstein cattle, respectively (4 to 22 years). Separate genetic analyses of first and multiple lactations were carried out for each breed. The results show that genetic parameters especially polygenic variance and heritability of milk flow in the first lactation were very similar under both mixed inheritance (polygenes + major gene) and polygenic models. Segregation analyses yielded very low major gene variances which favour the polygenic determinism of milk flow. Heritabilities and repeatabilities of milk flow in both Brown Swiss and Simmental were high (0.44 to 0.48 and 0.54 to 0.59, respectively). The heritability of milk flow based on scores of milking ability in Holstein was intermediate (0.25). Variance components and heritabilities in the first lactation were slightly larger than those estimates for multiple lactations. The results suggest that milk flow (the quantity of milk per minute of milking) is a relevant measurement to characterise the cows milking ability which is a good candidate trait to be evaluated for a possible inclusion in the selection objectives in dairy cattle.  相似文献   

12.
The seven transmembrane domain melanocortin-1 receptor (Mc1r) encoded by the coat color extension gene (E) plays a key role in the signaling pathway of melanin synthesis. Upon the binding of agonist (melanocortin hormone, α-MSH) or antagonist (Agouti protein) ligands, the melanosomal synthesis of eumelanin and/or phaeomelanin pigments is stimulated or inhibited, respectively. Different alleles of the extension gene were cloned from unrelated animals belonging to French cattle breeds and sequenced. The wild type E allele was mainly present in Normande cattle, the dominant ED allele in animals with black color (i.e. Holstein), whereas the recessive e allele was identified in homozygous animals exhibiting a more or less strong red coat color (Blonde d''Aquitaine, Charolaise, Limousine and Salers). A new allele, named E1, was found in either homozygous (E1/E1) or heterozygous (E1/E) individuals in Aubrac and Gasconne breeds. This allele displayed a 4 amino acid duplication (12 nucleotides) located within the third cytoplasmic loop of the receptor, a region known to interact with G proteins. A first genotyping assay of the main French cattle breeds is described based on these four extension alleles.  相似文献   

13.
Dominant black coat color in sheep is predicted to be caused by an allele E D at the extension locus. Recent studies have shown that this gene encodes the melanocyte stimulating hormone receptor (MC1-R). In mouse and fox, naturally occurring mutations in the coding region of MC1-R produce a constitutively activated receptor that switches the synthesis from phaeomelanin to eumelanin within the melanocyte, explaining the black coat color observed phenotypically. In the sheep, we have identified a Met→Lys mutation in position 73 (M73K) together with a Asp → Asn change at position 121 (D121N) showing complete cosegregation with dominant black coat color in a family lineage. Only the M73K mutation showed constitutive activation when introduced into the corresponding mouse receptor (mMC1-R) for pharmacological analysis; however, the position corresponding to D121 in the mouse receptor is required for high affinity ligand binding. The pharmacological profile of the M73K change is unique compared to the constitutively active E92K mutation in the sombre mouse and C123R mutation in the Alaska silver fox, indicating that the M73K change activates the receptor via a mechanism distinct from these previously characterized mutations. Received: 18 September 1997 / Accepted: 14 October 1998  相似文献   

14.
The molecular background of many loci affecting coat colour inheritance in cattle is still incompletely characterized, although it is known that coat colour results from the joint effects of several loci, e.g. agouti, extension and dilution. Dilution alleles are responsible for a dilution effect on the original coat colour of an individual, which is determined by the agouti and extension loci. Different loci affecting dilution of pigment are suggested in Charolais (Dc) and Simmental (Ds). To enable chromosomal mapping of the Dc mutation, 133 animals from an F2 full-sib resource population generated from a cross of Charolais and German Holstein were scored for the coat colour dilution phenotype. Linkage analysis covering all autosomes revealed a significant linkage of the dilution phenotype with microsatellite markers on bovine chromosome 5. No recombination was observed between marker ETH10 and the Dc locus. Positional and functional information identified the bovine silver homolog (SILV) gene as a candidate for the Dc mutation. Results from comparative sequencing of the SILV gene in individuals with different dilution coat colour phenotypes confirmed the presence of a c.64G>A non-synonymous mutation, which had previously been identified in the Charolais breed. The alleles at this locus were associated with coat colour dilution in this study. However, further investigation of colour inheritance within the F2 resource population indicated that a single diallelic mutation in the SILV gene cannot explain the total observed variation of coat colour dilution.  相似文献   

15.
Massese is an Italian dairy sheep breed characterized by animals with black skin and horns and black or apparent grey hairs. Owing to the presence of these two coat colour types, this breed can be considered an interesting model to evaluate the effects of coat colour gene polymorphisms on this phenotypic trait. Two main loci have been already shown to affect coat colour in sheep: Agouti and Extension coding for the agouti signalling protein (ASIP) and melanocortin 1 receptor (MC1R) genes, respectively. The Agouti locus is affected by a large duplication including the ASIP gene that may determine the Agouti white and tan allele (A(Wt)). Other disrupting or partially inactivating mutations have been identified in exon 2 (a deletion of 5 bp, D(5); and a deletion of 9 bp, D(9)) and in exon 4 (g.5172T>A, p.C126S) of the ASIP gene. Three missense mutations in the sheep MC1R gene cause the dominant black E(D) allele (p.M73K and p.D121N) and the putative recessive e allele (p.R67C). Here, we analysed these ASIP and MC1R mutations in 161 Massese sheep collected from four flocks. The presence of one duplicated copy allele including the ASIP gene was associated with grey coat colour (P = 9.4E-30). Almost all animals with a duplicated copy allele (37 out of 41) showed uniform apparent grey hair and almost all animals without a duplicated allele (117 out of 120) were completely black. Different forms of duplicated alleles were identified in Massese sheep including, in almost all cases, copies with exon 2 disrupting or partially inactivating mutations making these alleles different from the A(Wt) allele. A few exceptions were observed in the association between ASIP polymorphisms and coat colour: three grey sheep did not carry any duplicated copy allele and four black animals carried a duplicated copy allele. Of the latter four sheep, two carried the E(D) allele of the MC1R gene that may be the cause of their black coat colour. The coat colour of all other black animals may be determined by non-functional ASIP alleles (non-agouti alleles, A(a)) and in a few cases by the E(D) Extension allele. At least three frequent ASIP haplotypes ([D(5):g.5172T], [N:g.5172A] and [D(5):g.5172A]) were detected (organized into six different diplotypes). In conclusion, the results indicated that coat colours in the Massese sheep breed are mainly derived by combining ASIP and MC1R mutations.  相似文献   

16.
Binding of melanocortin peptide agonists to the melanocortin-1 receptor of melanocytes results in eumelanin production, whereas binding of the agouti signalling protein inverse agonist results in pheomelanin synthesis. Recently, a novel melanocortin-1 receptor ligand was reported. A β-defensin gene mutation was found to be responsible for black coat colour in domestic dogs. Notably, the human equivalent, β-defensin 3, was found to bind with high affinity to the melanocortin-1 receptor; however, the action of β-defensin as an agonist or antagonist was unknown. Here, we use in vitro assays to show that β-defensin 3 is able to act as a weak partial agonist for cAMP signalling in human embryonic kidney (HEK) cells expressing human melanocortin-1 receptor. β-defensin 3 is also able to activate MAPK signalling in HEK cells stably expressing either wild type or variant melanocortin-1 receptors. We suggest that β-defensin 3 may be a novel melanocortin-1 receptor agonist involved in regulating melanocyte responses in humans.  相似文献   

17.
Melanin pigments produced in human melanocytes are classified into two categories; black coloured eumelanin and reddish-yellow pheomelanin. Stimulation of melanocytes with alpha-melanocyte-stimulating hormone (alpha-MSH), one of several melanogenic factors, has been reported to enhance eumelanogenesis to a greater degree than pheomelanogenesis, which contributes to hyperpigmentation in skin. Nitric oxide (NO) and histamine are also melanogenesis-stimulating factors that are released from cells surrounding melanocytes following ultraviolet (UV) irradiation. In this study, the effects of NO and histamine on the ratio of eumelanin and pheomelanin were examined in human melanocytes, and then compared with that of alpha-MSH. The amounts of eumelanin and pheomelanin were quantified using high-performance liquid chromatography analysis after oxidation and hydrolysis of melanin. Melanogenesis was induced by the addition of alpha-MSH, NO, or histamine to melanocytes. The amount of eumelanin production significantly increased with independent stimulation by these melanogenic factors, especially histamine, while that of pheomelanin significantly increased with alpha-MSH and NO, but only slightly with histamine. As a result, the ratio of eumelanin and pheomelanin increased significantly with the addition of NO or histamine. These results suggest that NO and histamine, as in the case of alpha-MSH, may contribute to UV-induced hyperpigmentation by enhancing eumelanogenesis.  相似文献   

18.
The melanocortin receptor 1 (MC1R) plays a central role in regulation of eumelanin (black/brown) and phaeomelanin (red/yellow) synthesis within the mammalian melanocyte and is encoded by the classical Extension (E) coat color locus. Sequence analysis of MC1R from seven porcine breeds revealed a total of four allelic variants corresponding to five different E alleles. The European wild boar possessed a unique MC1R allele that we believe is required for the expression of a wild-type coat color. Two different MC1R alleles were associated with the dominant black color in pigs. MC1R*2 was found in European Large Black and Chinese Meishan pigs and exhibited two missense mutations compared with the wild-type sequence. Comparative data strongly suggest that one of these, L99P, may form a constitutively active receptor. MC1R*3 was associated with the black color in the Hampshire breed and involved a single missense mutation D121N. This same MC1R variant was also associated with EP, which results in black spots on a white or red background. Two different missense mutations were identified in recessive red (e/e) animals. One of these, A240T, occurs at a highly conserved position, making it a strong candidate for disruption of receptor function.  相似文献   

19.
牛黑素皮质素受体1(MCIR)基因与毛色表型的研究   总被引:2,自引:0,他引:2  
牛MC1R基因不仅与毛色有关,而且与牛乳中乳蛋白的含量有关。利用PCR-RFLP和DNA测序技术分析了中国荷斯坦黑白花牛,中国荷斯坦红白花牛,鲁西黄牛和渤海黑牛共4个品种的MC1R基因。共检测出3种等位基因(ED,E ,e)。中国荷斯坦黑白花牛主要是ED和E 等位基因(ED=0.12、E =0.80);渤海黑牛也主要是ED和E 等位基因(ED=0.52、E =0.47);中国荷斯坦红白花牛和鲁西黄牛大多为e等位基因(e=0.95)。中国荷斯坦红白花牛和鲁西黄牛还存在E /e基因型。由此推测ED和E 等位基因导致黑色素合成。另外发现牛MC1R基因编码区725处存在一重要的SNP(单核苷酸多态性)。  相似文献   

20.
Pigmentation genes such as TYR (tyrosinase), TYRP1 (tyrosinase-related protein 1), DCT (previously TYRP2, or tyrosinase-related protein 2), ASIP (agouti) and MC1R (melanocortin receptor 1) play a major role in cattle coat colour. To understand the genotypic profile underlying coat colour in native Korean Hanwoo cattle and Angus black cattle, portions of the above-mentioned genes were amplified. Sequence analysis revealed variation in the TYRP1 (exon 5) and MC1R genes. Restriction enzyme analysis of these two genes could distinguish between different colours of Hanwoo cattle. Quantitative estimates of melanin and eumelanin in hair from three different-coloured Hanwoo phenotypes and Angus black showed significant differences at the breed and phenotypic levels. Finally, sequence variants in MC1R were associated with total melanin and eumelanin in breeds as well as in Hanwoo phenotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号