首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1-Phenylcyclobutylamine (PCBA) is shown to be both a substrate and a time-dependent irreversible inactivator of monoamine oxidase (MAO). Inactivation results in attachment to the flavin cofactor. For every molecule of PCBA leading to inactivation, 325 molecules are converted to product. The first metabolite formed is identified as 2-phenyl-1-pyrroline; then after a lag time, 3-benzoylpropanal and 3-benzoylpropionic acid are generated. The 3-benzoylpropanal is a product of MAO-catalyzed oxidation of 2-phenyl-1-pyrroline (presumably, of its hydrolysis product, gamma-aminobutyrophenone). The aldehyde is nonenzymatically oxidized by nascent hydrogen peroxide to the carboxylic acid. These results are consistent with a one-electron oxidation of PCBA to the amine radical cation followed by homolytic cyclobutane ring cleavage. The resulting radical can partition between cyclization (an intramolecular radical trap) to the 2-phenylpyrrolinyl radical and attachment to the flavin. The cyclic radical can be further oxidized by one electron to 2-phenyl-1-pyrroline. PCBA represents the first in the cyclobutylamine class of MAO inactivators and strongly supports involvement of a radical mechanism for MAO-catalyzed amine oxidations.  相似文献   

2.
Pathways of electron transfer reaction between p-nitroacetophenone (p-NAP) and ascorbic acid (AA) photosensitized by dimers of 3,3'-disulfopropyl-5,5'-dichlorothiacyanine triethylammonium (TC) and 3,3'-disulfopropyl-5,5'-dichloro-9,11-[ββ-dimethyltrimethylene]thiadicarbocyanine triethylammonium (TDC) are considered. In aqueous solution the dyes are present as an equilibrated mixture of monomers (M(-)) and dimers (M(2)(2-)). In contrast to monomers, the dimers of TC are characterized by a noticeable yield of intersystem crossing, whereas for TDC the triplet-triplet absorption of both monomers and dimers is easily observed upon ns-laser pulse. In the presence of p-NAP and AA the triplet state of the dimers of both dyes is mostly quenched by p-NAP yielding the radical pair [M(2)(-)˙p-NAP(-)˙] with subsequent dissociation of M(2)(-)˙ into M(-) and M˙ followed by one-electron reduction of M˙ by AA. These steps constitute a pathway of photosensitization by the dimers. For TDC an additional pathway of photosensitization was found to occur. The primary step consists of electron transfer in the excited singlet state of the dimer resulting in the formation of the radicals M˙ and M(2-)˙. The next steps involve one-electron reduction of M˙ by AA and one-electron oxidation of M(2-)˙ by p-NAP which results in the formation of M(-) followed by dimerization.  相似文献   

3.
Free radicals produced during the autoxidation of 3,4-dihydroxyphenylalanine (DOPA) and other catechol(amine)s to melanins have been studied using electron spin resonance spectroscopy. Magnetic parameters for the radical intermediates have been determined, allowing the radicals to be unambiguously identified. Three types of radical are formed: the primary radical from one-electron oxidation of the parent catechol(amine); and two secondary radicals, one formed via OH- substitution, the other via cyclization. The formation of these radical species can be linked to molecular products formed during catecholamine oxidation and melanin formation.  相似文献   

4.
Free radicals produced during the autoxidation of 3,4-dihydroxyphenylalanine (DOPA) and other catechol(amine)s to melanins have been studied using electron spin resonance spectroscopy. Magnetic parameters for the radical intermediates have been determined, allowing the radicals to be unambiguously identified. Three types of radical are formed: the primary radical from one-electron oxidation of the parent catechol(amine); and two secondary radicals, one formed via OH substitution, the other via cyclization. The formation of these radical species can be linked to molecular products formed during catecholamine oxidation and melanin formation.  相似文献   

5.
A one-electron reductive metabolism of 1,2-dibromoethane (DBE) is described that gives rise to a free radical intermediate, which can be stabilized by a spin trapping agent and detected by electron spin resonance spectroscopy. Using rat liver microsomes or isolated hepatocytes from phenobarbitone pretreated animals, under hypoxic conditions, it has been possible to trap a free radical intermediate and identify it by using 13C-DBE. Inhibition experiments have demonstrated that the site of activation is the microsomal drug metabolizing system.  相似文献   

6.
NADPH-cytochrome P-450 reductase-catalyzed reduction of paraquat promoted the release of iron from ferritin. Aerobically, iron release was inhibited approximately 60% by superoxide dismutase, whereas xanthine oxidase-dependent iron release was inhibited nearly 100%. This suggests that both superoxide and the paraquat cation radical can catalyze the release of iron from ferritin. Accordingly, under anaerobic conditions, the paraquat radical mediated a very rapid, complete release of iron from ferritin. Similarly, the cation free radicals of the closely related chemicals, diquat and benzyl viologen, also promoted iron release. ESR studies demonstrated that electron transfer from the paraquat cation radical to ferritin accounts for the reductive release of iron. The ferritin structure was not altered by exposure to the paraquat radical and also retained its ability to re-incorporate iron. These studies indicate that release of iron from ferritin may be a common feature contributing to free radical-mediated toxicities.  相似文献   

7.
Nitroarylmethyl quaternary (NMQ) ammonium salts of the basic DNA intercalator AMAC (N,N-dimethylaminoethyl-9-amino-5-methylacridine-4-carboxamide) are of interest as anticancer prodrugs. A sensitive HPLC assay has been developed for quantitation of AMAC and its NMQ prodrugs in cultured cells, plasma and tissue. Recovery of the prodrugs, without conversion to AMAC, was achieved using extraction in alkaline acetonitrile followed by immediate reneutralisation. Reversed-phase HPLC with fluorescence detection gave a detection limit of 3 fmol for AMAC, with linearity to 20 nmol (using diode array absorbance at high concentrations). This assay was used to measure cellular uptake, and hypoxic metabolism to AMAC, of three NMQ-AMAC prodrugs.  相似文献   

8.
Electrochemical studies on actinomycin D (1) and two analogs, 2-amino-3-phenoxazone (2) and 1,2,4-trichloro-7-nitrophenoxazone (3) were analyzed by polarography and ESR spectroscopy. The polarograms of the three compounds in acetonitrile all show two reduction waves. ESR experiments confirm that the first reduction wave corresponds to a one-electron transfer process which produces a phenoxazone free radical anion and the second wave corresponds to a subsequent one-electron transfer producing a diamagnetic dianion. Substitution with electron-withdrawing groups such as NO2 (at C-7) and chloro (at C-1, C-2 and C-4)3 facilitated the reduction of the phenoxazone ring system to a free radical (i.e., half-wave potentials; 1, -0.815 V; 2, -0.920 V; 3, -0.135 V). It was found, by computer simulation of the ESR spectra, that the spin density in the electrochemically generated free radicals from 1, 2 and 3 was preferentially located in the benzenoid ring and at the N-10 nitrogen. For radicals obtained from 1 and 2, only a small residual spin density could be detected in the quinoid ring. Since 1 can be metabolized to a free radical in cells, these free radical forms of 1 and its analogs may represent reactive forms of the phenoxazone nucleus.  相似文献   

9.
The main objective of the present study was to investigate the proposed role of cytochrome P450 in the reductive metabolism of quinones as well as in the formation of reduced oxygen species in liver microsomes from phenobarbital (PB-microsomes) and beta-naphthoflavone (beta NF-microsomes) pretreated rats. In the present study, 2,3,5,6-tetramethylbenzoquinone (TMQ) was chosen as a model quinone. Anaerobic one-electron reduction of TMQ by PB-microsomes showed relatively strong electron spin resonance (ESR) signals of the oxygen-centered semiquinone free radical (TMSQ), whereas these signals were hardly detectable with beta NF-microsomes. Under aerobic conditions TMSQ formation was diminished and concomitant reduction of molecular oxygen occurred in PB-microsomes. Interestingly, TMQ-induced superoxide anion radicals, measured by ESR (using the spin trap 5,5'-dimethyl-1-pyrroline-N-oxide), and hydrogen peroxide generation was found to occur with beta NF-microsomes as well. Furthermore, SK&F 525-A (a type I ligand inhibitor of cytochrome P450) inhibited TMQ-induced hydrogen peroxide formation in both PB- and beta NF-microsomes. However, metyrapone and imidazole (type II ligand inhibitors of cytochrome P450) inhibited molecular oxygen reduction in beta NF-microsomes and not in PB-microsomes. The present study indicates that cytochrome P450-mediated one-electron reduction of TMQ to TMSQ and subsequent redox cycling of TMSQ with molecular oxygen constitutes the major source for superoxide anion radical and hydrogen peroxide generation in PB-microsomes (i.e. from the reductase activity of cytochrome P450). However, most of the superoxide anion radical formed upon aerobic incubation of TMQ with beta NF-microsomes originates directly from the dioxyanion-ferri-cytochrome P450 complex (i.e. from the oxidase activity of cytochrome P450). In conclusion, both the one-electron reduction of TMQ and molecular oxygen were found to be cytochrome P450 dependent. Apparently, both the reductase and oxidase activities of cytochrome P450 may be involved in the reductive cytotoxicity of chemotherapeutic agents containing the quinoid moiety.  相似文献   

10.
J A Navarro  M Roncel  G Tollin 《Biochemistry》1990,29(25):6102-6107
Steady-state and laser flash photolysis techniques have been used to examine the photoreduction of yeast glutathione reductase by the one-electron reduction products of 5-deazariboflavin and the viologen analogue 1,1'-propylene-2,2'-bipyridyl. Steady-state photoreduction of the enzyme with the viologen generates the two-electron-reduced form, whereas photoreduction with deazaflavin generates the anion semiquinone. Flash photolysis indicates that the product of viologen radical reduction is also a semiquinone, suggesting that this species is rapidly further reduced by viologen in the steady-state experiment to form the EH2 enzyme. This reduction is apparently inhibited when deazaflavin is the photoreductant, perhaps due to complexation of the anion semiquinone with deazaflavin. Steady-state experiments demonstrate that complexation of the anion semiquinone with NADP+ also inhibits further reduction. Both one-electron reduction reactions of oxidized glutathione reductase proceed at close to diffusion-controlled rates (second-order rate constants = 10(8)-10(9) M-1 s-1), despite the relatively buried nature of the FAD cofactor. Addition of NADP+ and oxidized glutathione produced no effects on the kinetics of the initial entry of the electron into the enzyme. No kinetic evidence of intramolecular electron transfer involving the FAD and the protein disulfide was obtained during or subsequent to the initial one-electron reduction process. Thus, if this reaction occurs in the semiquinone, it must be quite rapid (k greater than 8000 s-1).  相似文献   

11.
Hypoxia, a ubiquitous feature of tumors, can be exploited by hypoxia-activated prodrugs (HAP) that are substrates for one-electron reduction in the absence of oxygen. NADPH:cytochrome P450 oxidoreductase (POR) is considered one of the major enzymes responsible, based on studies using purified enzyme or forced overexpression in cell lines. To examine the role of POR in HAP activation at endogenous levels of expression, POR knock-outs were generated in HCT116 and SiHa cells by targeted mutation of exon 8 using zinc finger nucleases. Absolute quantitation by proteotypic peptide mass spectrometry of DNA sequence-confirmed multiallelic mutants demonstrated expression of proteins with residual one-electron reductase activity in some clones and identified two (Hko2 from HCT116 and S2ko1 from SiHa) that were functionally null by multiple criteria. Sensitivities of the clones to 11 HAP (six nitroaromatics, three benzotriazine N-oxides, and two quinones) were compared with wild-type and POR-overexpressing cells. All except the quinones were potentiated by POR overexpression. Knocking out POR had a marked effect on antiproliferative activity of the 5-nitroquinoline SN24349 in both genetic backgrounds after anoxic exposure but little or no effect on activity of most other HAP, including the clinical stage 2-nitroimidazole mustard TH-302, dinitrobenzamide mustard PR-104A, and benzotriazine N-oxide SN30000. Clonogenic cell killing and reductive metabolism of PR-104A and SN30000 under anoxia also showed little change in the POR knock-outs. Thus, although POR expression is a potential biomarker of sensitivity to some HAP, identification of other one-electron reductases responsible for HAP activation is needed for their rational clinical development.  相似文献   

12.
We designed and synthesized N(3)-substituted 5-fluorodeoxyuridines as radiation-activated prodrugs of the antitumor agent, 5-fluorodeoxyuridine (5-FdUrd). A series of 5-FdUrd derivatives possessing a 2-oxoalkyl group at the N(3)-position released 5-FdUrd in good yield via one-electron reduction initiated by hypoxic irradiation. Cytotoxicity of the 5-FdUrd derivative possessing the 2-oxocyclopentyl group (3d) was low, but was enhanced by hypoxic irradiation resulting in 5-FdUrd release.  相似文献   

13.
Hypochlorous acid and its conjugate base, hypochlorite ions, produced under inflammatory conditions, may produce chloramides of glycosaminoglycans, these being significant components of the extracellular matrix (ECM). This may occur through the binding of myeloperoxidase directly to the glycosaminoglycans. The N–Cl group in the chloramides is a potential selective target for both reducing and oxidizing radicals, leading possibly to more efficient and damaging fragmentation of these biopolymers relative to the parent glycosaminoglycans. To investigate the effect of the N–Cl group, we used ionizing radiation to produce quantifiable concentrations of the reducing radicals, hydrated electron and superoxide radical, and also of the oxidizing radicals, hydroxyl, carbonate, and nitrogen dioxide, all of which were reacted with hyaluronan and heparin and their chloramides in this study. PAGE gels calibrated for molecular weight allowed the consequent fragmentation efficiencies of these radicals to be calculated. Hydrated electrons were shown to produce fragmentation efficiencies of 100 and 25% for hyaluronan chloramide (HACl) and heparin chloramide (HepCl), respectively. The role of the sulfate group in heparin in the reduction of fragmentation can be rationalized using mechanisms proposed by M.D. Rees et al. (J. Am. Chem. Soc. 125:13719–13733; 2003), in which the initial formation of an amidyl radical leads rapidly to a C-2 radical on the glucosamine moiety. This is 100% efficient at causing glycosidic bond breakage in HACl but only 25% efficient in HepCl, the role of the sulfate group being to favor the nonfragmentary routes for the C-2 radical. The weaker reducing agent, the superoxide radical, did not cause fragmentation of either HACl or HepCl although kinetic reactivity had been demonstrated in earlier studies. Experiments using the oxidizing radicals, hydroxyl and carbonate, both potential in vivo species, showed significant increases in fragmentation efficiencies for both HACl and HepCl, relative to the parent molecules. The carbonate radical was shown to be involved in site-specific reactions at the N–Cl groups, reacting via abstraction of Cl, to produce the same amidyl radical produced by one-electron reductants such as the hydrated electron. As for the hydrated electrons, the data support fragmentation efficiencies of 100 and 29% for reaction of carbonate radicals at N–Cl for HACl and HepCl, respectively. For the weaker oxidant, nitrogen dioxide, no fragmentation was observed, probably because of a low kinetic reactivity and low reduction potential. It seems likely therefore that the N–Cl group can direct damage to extracellular matrix glycosaminoglycan chloramides, which may be produced under inflammatory conditions. The in vivo species, the carbonate radical, is also much more likely to be site-specific in its reactions with such components of the ECM than the hydroxyl radical.  相似文献   

14.
Hinckley GT  Frey PA 《Biochemistry》2006,45(10):3219-3225
Lysine 2,3-aminomutase (LAM) catalyzes the interconversion of l-lysine and l-beta-lysine by a free radical mechanism. The 5'-deoxyadenosyl radical derived from the reductive cleavage of S-adenosyl-l-methionine (SAM) initiates substrate-radical formation. The [4Fe-4S](1+) cluster in LAM is the one-electron source in the reductive cleavage of SAM, which is directly ligated to the unique iron site in the cluster. We here report the midpoint reduction potentials of the [4Fe-4S](2+/1+) couple in the presence of SAM, S-adenosyl-l-homocysteine (SAH), or 5'-{N-[(3S)-3-aminocarboxypropyl]-N-methylamino}-5'-deoxyadenosine (azaSAM) as measured by spectroelectrochemistry. The reduction potentials are -430 +/- 2 mV in the presence of SAM, -460 +/- 3 mV in the presence of SAH, and -497 +/- 10 mV in the presence of azaSAM. In the absence of SAM or an analogue and the presence of dithiothreitol, dihydrolipoate, or cysteine as ligands to the unique iron, the midpoint potentials are -479 +/- 5, -516 +/- 5, and -484 +/- 3 mV, respectively. LAM is a member of the radical SAM superfamily of enzymes, in which the CxxxCxxC motif donates three thiolate ligands to iron in the [4Fe-4S] cluster and SAM donates the alpha-amino and alpha-carboxylate groups of the methionyl moiety as ligands to the fourth iron. The results show the reduction potentials in the midrange for ferredoxin-like [4Fe-4S] clusters. They show that SAM elevates the reduction potential by 86 mV relative to that of dihydrolipoate as the cluster ligand. This difference accounts for the SAM-dependent reduction of the [4Fe-4S](2+) cluster by dithionite reported earlier. Analogues of SAM have a weakened capacity to raise the potential. We conclude that the midpoint reduction potential of the cluster ligated to SAM is 1.2 V less negative than the half-wave potential for the one-electron reductive cleavage of simple alkylsulfonium ions in aqueous solution. The energetic barrier in the reductive cleavage of SAM may be overcome through the use of binding energy.  相似文献   

15.
Flavin electron transferases can catalyze one- or two-electron reduction of quinones including bioreductive antitumor quinones. The recombinant neuronal nitric oxide synthase (nNOS) reductase domain, which contains the FAD-FMN prosthetic group pair and calmodulin-binding site, catalyzed aerobic NADPH-oxidation in the presence of the model quinone compound menadione (MD), including antitumor mitomycin C (Mit C) and adriamycin (Adr). Calcium/calmodulin (Ca2+/CaM) stimulated the NADPH oxidation of these quinones. The MD-mediated NADPH oxidation was inhibited in the presence of NAD(P)H:quinone oxidoreductase (QR), but Mit C- and Adr-mediated NADPH oxidations were not. In anaerobic conditions, cytochrome b5 as a scavenger for the menasemiquinone radical (MD*-) was stoichiometrically reduced by the nNOS reductase domain in the presence of MD, but not of QR. These results indicate that the nNOS reductase domain can catalyze a only one-electron reduction of bivalent quinones. In the presence or absence of Ca2+/CaM, the semiquinone radical species were major intermediates observed during the oxidation of the reduced enzyme by MD, but the fully reduced flavin species did not significantly accumulate under these conditions. Air-stable semiquinone did not react rapidly with MD, but the fully reduced species of both flavins, FAD and FMN, could donate one electron to MD. The intramolecular electron transfer between the two flavins is the rate-limiting step in the catalytic cycle [H. Matsuda, T. Iyanagi, Biochim. Biophys. Acta 1473 (1999) 345-355). These data suggest that the enzyme functions between the 1e- <==> 3e- level during one-electron reduction of MD, and that the rates of quinone reductions are stimulated by a rapid electron exchange between the two flavins in the presence of Ca2+/CaM.  相似文献   

16.
Reduction and release of ferritin iron by plant phenolics   总被引:1,自引:0,他引:1  
The reductive release of ferritin iron by several naturally occurring o-diphenols was studied. The initial rate of iron release was quantified by spectrophotometric measurement of the Fe(ferrozine)3(2+) complex, which absorbs maximally at 562 nm. The initial rate of iron release was dependent upon o-diphenol concentration, but not on the concentration of the chromophoric chelating agent, ferrozine, Stoichiometric measurements resulted in a ratio of 2Fe(II) released per molecule of o-diphenol. The series of o-diphenols studied included, caffeic acid, chlorogenic acid, dihydrocaffeic acid, 3,4-dihydroxybenzoic acid, and several analogs. These reductants represent an oxidation reduction potential range of 0.38 volts. A direct correlation between reducing power of the o-diphenols and rate of ferritin iron release was observed. Superoxide dismutase, catalase, mannitol, or general radical traps had no effect on the rate of iron removal; however, EDTA and oxalate inhibited iron release. A mechanism for ferritin iron reduction and release by o-diphenols consistent with the experimental observations is discussed.  相似文献   

17.
Uroporphyrin I, which accumulates in body tissues of congenital erythropoietic porphyria patients, can undergo an enzymatic one-electron reduction to the porphyrin anion radical when a suitable reducing cofactor is present. We have demonstrated, in the absence of light, that anaerobic microsomal incubations containing NADPH and uroporphyrin I give an electron spin resonance spectrum consistent with the enzymatic formation of a porphyrin anion free radical. This radical undergoes a second-order decay (k2 approximately 10(5) M-1 s-1) due to nonenzymatic disproportionation of the radical. Aerobic microsomal incubations were also investigated for the reduction of oxygen to superoxide by monitoring oxygen consumption and the spin-trapping of superoxide. These experiments demonstrate that electron transfer from the porphyrin radical to molecular oxygen does occur, but due to the slow formation of the radical anion, no oxygen consumption above the basal level could be detected in the microsomal incubations. The photoreduction of uroporphyrin I in aerobic and anaerobic incubations was also investigated.  相似文献   

18.
A potential approach for activating prodrugs in hypoxic regions of tumors is to use ionizing radiation, rather than bioreductive enzymes, to effect reduction. This study investigates radiolytic release of 8-hydroxyquinoline (8-HQ), as a model for hydroxyaza-chloromethylbenzindoline DNA minor groove alkylators, from Co(III) complexes under hypoxia. 8-HQ release, measured by HPLC, showed higher efficiency (one-electron stoichiometry) when the auxiliary ligand was a tetraazamacrocycle [e.g. 1,4,7,10-tetraazacyclododecane (cyclen)] rather than a triazamacrocycle [1,4,7-triazacyclononane (TACN)]. These complexes differ from the bioreductive cobalt complex SN 24771 in that their reduction provides stable cobalt-containing products rather than free (aquated) Co(2+). Radiolytic release of 8-HQ from Co(cyclen)(8-HQ) and Co(TACN)(CN)(8-HQ) was also demonstrated in deoxygenated human plasma, selectively in the absence of oxygen, again with higher efficiency for the cyclen system. The cobalt complexes were >1000-fold less potent than free 8-HQ as inhibitors of cell proliferation and were metabolically stable in aerobic and hypoxic cell cultures. Investigation of cell uptake of total cobalt, by inductively coupled plasma mass spectrometry, showed that these complexes enter cells but do not accumulate to the high concentrations seen with SN 24771. The results demonstrate the feasibility of masking the cytotoxicity of hydroxyquinoline-based cytotoxins as Co(III) complexes and demonstrate the utility of cyclen-based auxiliary ligands for optimizing radiolytic activation of these novel prodrugs under hypoxia.  相似文献   

19.
The one-electron electrochemical reduction of diaziquone (AZQ) and 12 analogs is analyzed using ESR spectroscopy and cyclic voltammetry. The hyperfine coupling constants arising from the interaction of the unpaired electron with the aziridine nitrogen nuclei fall within 1.20 and 2.26 G. Smaller couplings are observed arising from the protons and nitrogens in the carboethoxyamino groups. The in vitro activity of AZQ and its analogs is examined. Methyl groups in the aziridine rings increase the activity of some analogs. In the absence of aziridines, a chloroquinone compound with only carboethoxyamino groups was surprisingly active. This compound has a more positive cathodic peak than diaziquone.  相似文献   

20.
The anaerobic enzymatic one-electron reduction of uroporphyrin I (in the absence of light) by the ferredoxin/ferredoxin:NADP+ oxidoreductase system was investigated using NADPH as the source of reducing equivalents. The porphyrin anion free radical metabolite formed by one-electron reduction of the parent molecule was detected with ESR spectroscopy. The ESR spectrum exhibited a singlet (g = 2.0021) with a 5.4-G peak-to-peak linewidth. The reduction process was also investigated under aerobic conditions. The reduction of molecular oxygen to superoxide anion radical by the porphyrin anion radical was demonstrated by using the ESR technique of spin trapping. The ESR spectra of the spin-trapped oxygen-derived radicals were superoxide dismutase-sensitive and catalase-insensitive, supporting the assignment of the trapped radical to the superoxide anion radical. These aerobic experiments demonstrate electron transfer from the porphyrin anion radical to molecular oxygen. The anaerobic reduction of Photofrin II by hepatic microsomes and the ferredoxin/ferredoxin:NADP+ oxidoreductase system to a porphyrin anion radical was also investigated. Free radical formation by ferredoxin: NADP+ oxidoreductase is totally dependent upon ferredoxin. The ESR spectrum of this porphyrin free radical also exhibited a singlet (g = 2.0026) with a 15-G peak-to-peak linewidth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号