首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sensory rhodopsin II (SRII, also called pharaonis phoborhodopsin, ppR) is responsible for negative phototaxis in Natronomonas pharaonis. Photoisomerization of the retinal chromophore from all- trans to 13- cis initiates conformational changes in the protein, leading to activation of the cognate transducer protein (HtrII). We previously observed enhancement of the C 14-D stretching vibration of the retinal chromophore at 2244 cm (-1) upon formation of the K state and interpreted that a steric constraint occurs at the C 14D group in SRII K. Here, we identify the counterpart of the C 14D group as Thr204, because the C 14-D stretching signal disappeared in T204A, T204S, and T204C mutants as well as a C 14-HOOP (hydrogen out-of-plane) vibration at 864 cm (-1). Although the K state of the wild-type bacteriorhodopsin (BR), a light-driven proton pump, possesses neither 2244 nor 864 cm (-1) bands, both signals appeared for the K state of a triple mutant of BR that functions as a light sensor (P200T/V210Y/A215T). We found a positive correlation between these vibrational amplitudes of the C 14 atom at 77 K and the physiological phototaxis response. These observations strongly suggest that the steric constraint between the C 14 group of retinal and Thr204 of the protein is a prerequisite for light-signal transduction by SRII.  相似文献   

2.
Suzuki D  Sudo Y  Furutani Y  Takahashi H  Homma M  Kandori H 《Biochemistry》2008,47(48):12750-12759
Sensory rhodopsin I (SRI) is one of the most interesting photosensory receptors in nature because of its ability to mediate opposite signals depending on light color by photochromic one-photon and two-photon reactions. Recently, we characterized SRI from eubacterium Salinibacter ruber (SrSRI). This protein allows more detailed information about the structure and structural changes of SRI during its action to be obtained. In this paper, Fourier transform infrared (FTIR) spectroscopy is applied to SrSRI, and the spectral changes upon formation of the K and M intermediates are compared with those of other archaeal rhodopsins, SRI from Halobacterium salinarum (HsSRI), sensory rhodopsin II (SRII), bacteriorhodopsin (BR), and halorhodopsin (HR). Spectral comparison of the hydrogen out-of-plane (HOOP) vibrations of the retinal chromophore in the K intermediates shows that extended choromophore distortion takes place in SrSRI and HsSRI, as well as in SRII, whereas the distortion is localized in the Schiff base region in BR and HR. It appears that sensor and pump functions are distinguishable from the spectral feature of HOOP modes. The HOOP band at 864 cm(-1) in SRII, important for negative phototaxis, is absent in SrSRI, suggesting differences in signal transfer mechanism between SRI and SRII. The strongly hydrogen-bound water molecule, important for proton pumps, is observed at 2172 cm(-1) in SrSRI, as well as in BR and SRII. The formation of the M intermediate accompanies the appearance of peaks at 1753 (+) and 1743 (-) cm(-1), which can be interpreted as the protonation signal of the counterion (Asp72) and the proton release signal from an unidentified carboxylic acid, respectively. The structure and structural changes of SrSRI are discussed on the basis of the present infrared spectral comparisons with other rhodopsins.  相似文献   

3.
Bacteriorhodopsin (BR) and sensory rhodopsin II (SRII), homologous photoactive proteins in haloarchaea, have different molecular functions. BR is a light-driven proton pump, whereas SRII is a phototaxis receptor that transmits a light-induced conformational change to its transducer HtrII. Despite these distinctly different functions, a single residue substitution, Ala215 to Thr215 in the BR retinal-binding pocket, enables its photochemical reactions to transmit signals to HtrII and mediate phototaxis. We pursued a crystal structure of the signaling BR mutant (BR_A215T) to determine the structural changes caused by the A215T mutation and to assess what new photochemistry is likely to be introduced into the BR photoactive site. We crystallized BR_A215T from bicelles and solved its structure to 3.0 Å resolution to enable an atomic-level comparison. The analysis was complemented by molecular dynamics simulation of BR mutated in silico. Three main conclusions regarding the roles of photoactive site residues in signaling emerge from the comparison of BR_A215T, BR, and SRII structures: (i) the Thr215 residue in signaling BR is positioned nearly identically with respect to the retinal chromophore as in SRII, consistent with its role in producing a steric conflict with the retinal C14 group during photoisomerization, proposed earlier to be essential for SRII signaling from vibrational spectroscopy and motility measurements; (ii) Tyr174–Thr204 hydrogen bonding, critical in SRII signaling and mimicked in signaling BR, is likely auxiliary, for example, to maintain Thr204 in the proper position for the steric trigger to occur; and (iii) the primary role of Arg72 in SRII is spectral tuning and not signaling.  相似文献   

4.
Sensory rhodopsin II (SRII), a receptor for negative phototaxis in haloarchaea, transmits light signals through changes in protein-protein interaction with its transducer HtrII. Light-induced structural changes throughout the SRII-HtrII interface, which spans the periplasmic region, membrane-embedded domains, and cytoplasmic domains near the membrane, have been identified by several studies. Here we demonstrate by site-specific mutagenesis and analysis of phototaxis behavior that two residues in SRII near the membrane-embedded interface (Tyr174 on helix F and Thr204 on helix G) are essential for signaling by the SRII-HtrII complex. These residues, which are the first in SRII shown to be required for phototaxis function, provide biological significance to the previous observation that the hydrogen bond between them is strengthened upon the formation of the earliest SRII photointermediate (SRII(K)) only when SRII is complexed with HtrII. Here we report frequency changes of the S-H stretch of a cysteine substituted for SRII Thr204 in the signaling state intermediates of the SRII photocycle, as well as an influence of HtrII on the hydrogen bond strength, supporting a direct role of the hydrogen bond in SRII-HtrII signal relay chemistry. Our results suggest that the light signal is transmitted to HtrII from the energized interhelical hydrogen bond between Thr204 and Tyr174, which is located at both the retinal chromophore pocket and in helices F and G that form the membrane-embedded interaction surface to the signal-bearing second transmembrane helix of HtrII. The results argue for a critical process in signal relay occurring at this membrane interfacial region of the complex.  相似文献   

5.
Sudo Y  Furutani Y  Iwamoto M  Kamo N  Kandori H 《Biochemistry》2008,47(9):2866-2874
pharaonis phoborhodopsin ( ppR, also called pharaonis sensory rhodopsin II, psRII) is a receptor for negative phototaxis in Natronomonas pharaonis. The X-ray crystallographic structure of ppR is very similar to those of the ion-pumping rhodopsins, bacteriorhodopsin (BR) and halorhodopsin (hR). However, the decay processes of the photocycle intermediates such as M and O are much slower than those of BR and hR, which is advantageous for the sensor function of ppR. Iwamoto et al. previously found that, in a quadruple mutant (P182S/P183E/V194T/T204C; denoted as SETC) of ppR, the decay of the O intermediate was accelerated by approximately 100 times ( t 1/2 approximately 6.6 ms vs 690 ms for the wild type of ppR), being almost equal to that of BR (Iwamoto, M., et al. (2005) Biophys. J. 88, 1215-1223). The mutated residues are located on the extracellular surface (Pro182, Pro183, and Val194) and near the Schiff base (Thr204). The present Fourier-transform infrared (FTIR) spectroscopy of SETC revealed that protein structural changes in the K and M states were similar to those of the wild type. In contrast, the ppR O minus ppR infrared difference spectra of SETC are clearly different from those of the wild type in amide-I (1680-1640 cm (-1)) and S-H stretching (2580-2520 cm (-1)) vibrations. The 1673 (+) and 1656 (-) cm (-1) bands newly appear for SETC in the frequency region typical for the amide-I vibration of the alpha II- and alpha I-helices, respectively. The intensities of the 1673 (+) cm (-1) band of various mutants were well correlated with their O-decay half-times. Since the alpha II-helix possesses a considerably distorted structure, the result implies that distortion of the helix is required for fast O-decay. In addition, the characteristic changes in the S-H stretching vibration of Cys204 were different between SETC and T204C, suggesting that structural change near the Schiff base was induced by mutations of the extracellular surface. We conclude that the lifetime of the O intermediate in ppR is regulated by the distorted alpha-helix and strengthened hydrogen bond of Cys204.  相似文献   

6.
Nishikata K  Ikeguchi M  Kidera A 《Biochemistry》2012,51(30):5958-5966
The complex of sensory rhodopsin II (SRII) and its cognate transducer HtrII (2:2 SRII-HtrII complex) consists of a photoreceptor and its signal transducer, respectively, associated with negative phototaxis in extreme halophiles. In this study to investigate how photoexcitation in SRII affects the structures of the complex, we conducted two series of molecular dynamics simulations of the complex of SRII and truncated HtrII (residues 1-136) of Natronomonas pharaonis linked with a modeled HAMP domain in the lipid bilayer using the two crystal structures of the ground state and the M-intermediate state as the starting structures. The simulation results showed significant enhancements of the structural differences observed between the two crystal structures. Helix F of SRII showed an outward motion, and the C-terminal end of transmembrane domain 2 (TM2) in HtrII rotated by ~10°. The most significant structural changes were observed in the overall orientations of the two SRII molecules, closed in the ground state and open in the M-state. This change was attributed to substantial differences in the structure of the four-helix bundle of the HtrII dimer causing the apparent rotation of TM2. These simulation results established the structural basis for the various experimental observations explaining the structural differences between the ground state and the M-intermediate state.  相似文献   

7.
H Kandori  Y Furutani  K Shimono  Y Shichida  N Kamo 《Biochemistry》2001,40(51):15693-15698
In the Schiff base region of bacteriorhodopsin (BR), a light-driven proton-pump protein, three internal water molecules are involved in a pentagonal cluster structure. These water molecules constitute a hydrogen-bonding network consisting of two positively charged groups, the Schiff base and Arg82, and two negatively charged groups, Asp85 and Asp212. Previous infrared spectroscopy of BR revealed stretching vibrations of such water molecules under strong hydrogen-bonding conditions using spectral differences in D2O and D2(18O) [Kandori and Shichida (2000) J. Am. Chem. Soc. 122, 11745-11746]. The present study extends the infrared analysis to another archaeal rhodopsin, pharaonis phoborhodopsin (ppR; also called pharaonis sensory rhodopsin-II, psR-II), involved in the negative phototaxis of Natronobacterium pharaonis. Despite functional differences between ppR and BR, similar spectral features of water bands were observed before and after photoisomerization of the retinal chromophore at 77 K. This implies that the structure and the structural changes of internal water molecules are similar between ppR and BR. Higher stretching frequencies of the bridged water in ppR suggest that the water-containing pentagonal cluster structure is considerably distorted in ppR. These observations are consistent with the crystallographic structures of ppR and BR. The water structure and structural changes upon photoisomerization of ppR are discussed here on the basis of their infrared spectra.  相似文献   

8.
The structures of the cytoplasmic loops of the phototaxis receptor sensory rhodopsin II (SRII) and the membrane-proximal cytoplasmic domain of its bound transducer HtrII were examined in the dark and in the light-activated state by fluorescent probes and cysteine cross-linking. Light decreased the accessibility of E-F loop position 154 in the SRII-HtrII complex, but not in free SRII, consistent with HtrII proximity, which was confirmed by tryptophans placed within a 5-residue region identified in the HtrII membrane-proximal domain that exhibited Forster resonance energy transfer to a fluorescent probe at position 154 in SRII. The Forster resonance energy transfer was eliminated in the signaling deficient HtrII mutant G83F without loss of affinity for SRII. Finally, the presence of SRII and HtrII reciprocally inhibit homodimer disulfide cross-linking reactions in their membrane-proximal domains, showing that each interferes with the others self-interaction in this region. The results demonstrate close proximity between SRII-HtrII in the membrane-proximal domain, and in addition, light stimulation of the SRII inhibition of HtrII cross-linking was observed, indicating that the contact is enhanced in the photoactivated complex. A mechanism is proposed in which photoactivation alters the SRII-HtrII interaction in the membrane-proximal region during the signal relay process.  相似文献   

9.
The phototaxis receptor complex composed of sensory rhodopsin II (SRII) and the transducer subunit HtrII mediates photorepellent responses in haloarchaea. Light-activated SRII transmits a signal through two HAMP switch domains (HAMP1 and HAMP2) in HtrII that bridge the photoreceptive membrane domain of the complex and the cytoplasmic output kinase-modulating domain. HAMP domains, widespread signal relay modules in prokaryotic sensors, consist of four-helix bundles composed of two helices, AS1 and AS2, from each of two dimerized transducer subunits. To examine their molecular motion during signal transmission, we incorporated SRII-HtrII dimeric complexes in nanodiscs to allow unrestricted probe access to the cytoplasmic side HAMP domains. Spin-spin dipolar coupling measurements confirmed that in the nanodiscs, SRII photoactivation induces helix movement in the HtrII membrane domain diagnostic of transducer activation. Labeling kinetics of a fluorescein probe in monocysteine-substituted HAMP1 mutants revealed a light-induced shift of AS2 against AS1 by one-half α-helix turn with minimal other changes. An opposite shift of AS2 against AS1 in HAMP2 at the corresponding positions supports the proposal from x-ray crystal structures by Airola et al. (Airola, M. V., Watts, K. J., Bilwes, A. M., and Crane, B. R. (2010) Structure 18, 436-448) that poly-HAMP chains undergo alternating opposite interconversions to relay the signal. Moreover, we found that haloarchaeal cells expressing a HAMP2-deleted SRII-HtrII exhibit attractant phototaxis, opposite from the repellent phototaxis mediated by the wild-type di-HAMP SRII-HtrII complex. The opposite conformational changes and corresponding opposite output signals of HAMP1 and HAMP2 imply a signal transmission mechanism entailing small shifts in helical register between AS1 and AS2 alternately in opposite directions in adjacent HAMPs.  相似文献   

10.
Furutani Y  Sudo Y  Wada A  Ito M  Shimono K  Kamo N  Kandori H 《Biochemistry》2006,45(39):11836-11843
pharaonis phoborhodopsin (ppR; also called pharaonis sensory rhodopsin II, psR-II) is a photoreceptor protein for negative phototaxis in Natronomonas pharaonis. Photoisomerization of the retinal chromophore from all-trans to 13-cis initiates conformational changes of the protein leading to activation of the cognate transducer protein (pHtrII). Elucidation of the initial photoreaction, formation of the K intermediate of ppR, is important for understanding the mechanism of storage of photon energy. We have reported the K minus ppR Fourier transform infrared (FTIR) spectra, including several vibrational bands of the retinal, the protein, and internal water molecules. It is interesting that more vibrational bands were observed in the hydrogen-out-of-plane (HOOP) region than for the light-driven proton pump, bacteriorhodopsin. This result implied that the steric constraints on the retinal chromophore in the binding pocket of ppR are distributed more widely upon formation of the initial intermediate. In this study, we assigned the HOOP and hydrogen-in-plane vibrations by means of low-temperature FTIR spectroscopy applied to ppR reconstituted with retinal deuterated at C7, C8, C10-C12, C14, and C15. As a result, the 966 (+)/971 (-) and 958 (+)/961 (-) cm(-1) bands were assigned to the C7=C8 and C11=C12 Au HOOP modes, respectively, suggesting that the structural changes spread to the middle part of the retinal. The positive bands at 1001, 994, 987, and 979 cm(-1) were assigned to the C15-HOOP vibrations of the K intermediate, whose frequencies are similar to those of the K(L) intermediate of bacteriorhodopsin trapped at 135 K. Another positive band at 864 cm(-1) was assigned to the C14-HOOP vibration. Relatively many positive bands of hydrogen-in-plane vibrations supported the wide distribution of structural changes of the retinal as well. These results imply that the light energy was stored mainly in the distortions around the Schiff base region while some part of the energy was transferred to the distal part of the retinal.  相似文献   

11.
Sensory rhodopsin II (SRII), a repellent phototaxis receptor found in Halobacterium salinarum, has several homologous residues which have been found to be important for the proper functioning of bacteriorhodopsin (BR), a light-driven proton pump. These include Asp73, which in the case of bacteriorhodopsin (Asp85) functions as the Schiff base counterion and proton acceptor. We analyzed the photocycles of both wild-type SRII and the mutant D73E, both reconstituted in Halobacterium salinarum lipids, using FTIR difference spectroscopy under conditions that favor accumulation of the O-like, photocycle intermediate, SII540. At both room temperature and -20 degrees C, the difference spectrum of SRII is similar to the BR-->O640 difference spectrum of BR, especially in the configurationally sensitive retinal fingerprint region. This indicates that SII540 has an all-trans chromophore similar to the O640 intermediate in BR. A positive band at 1761 cm-1 downshifts 40 cm-1 in the mutant D73E, confirming that Asp73 undergoes a protonation reaction and functions in analogy to Asp85 in BR as a Schiff base proton acceptor. Several other bands in the C=O stretching regions are identified which reflect protonation or hydrogen bonding changes of additional Asp and/or Glu residues. Intense bands in the amide I region indicate that a protein conformational change occurs in the late SRII photocycle which may be similar to the conformational changes that occur in the late BR photocycle. However, unlike BR, this conformational change does not reverse during formation of the O-like intermediate, and the peptide groups giving rise to these bands are partially accessible for hydrogen/deuterium exchange. Implications of these findings for the mechanism of SRII signal transduction are discussed.  相似文献   

12.
The interaction between sensory rhodopsin II (SRII) and its transducer HtrII was studied by the time-resolved laser-induced transient grating method using the D75N mutant of SRII, which exhibits minimal visible light absorption changes during its photocycle, but mediates normal phototaxis responses. Flash-induced transient absorption spectra of transducer-free D75N and D75N joined to 120 amino-acid residues of the N-terminal part of the SRII transducer protein HtrII (DeltaHtrII) showed only one spectrally distinct K-like intermediate in their photocycles, but the transient grating method resolved four intermediates (K(1)-K(4)) distinct in their volumes. D75N bound to HtrII exhibited one additional slower kinetic species, which persists after complete recovery of the initial state as assessed by absorption changes in the UV-visible region. The kinetics indicate a conformationally changed form of the transducer portion (designated Tr*), which persists after the photoreceptor returns to the unphotolyzed state. The largest conformational change in the DeltaHtrII portion was found to cause a DeltaHtrII-dependent increase in volume rising in 8 micros in the K(4) state and a drastic decrease in the diffusion coefficient (D) of K(4) relatively to those of the unphotolyzed state and Tr*. The magnitude of the decrease in D indicates a large structural change, presumably in the solvent-exposed HAMP domain of DeltaHtrII, where rearrangement of interacting molecules in the solvent would substantially change friction between the protein and the solvent.  相似文献   

13.
The Fourier transform infrared difference spectra between light-adapted bacteriorhodopsin (BR) and its photointermediates, L and M, were analyzed for the 3750-3450-cm-1 region. The O-H stretching vibrational bands were identified from spectra upon substitution with 2H2O. Among them, the 3642-cm-1 band of BR was assigned to water by substitution with H2(18)O. By a comparison with the published infrared spectra of the water in model systems [Mohr, S.C., Wilk, W.D., & Barrow, G.M. (1965) J. Am. Chem. Soc. 87, 3048-3052], it is shown that the O-H bonds of the water in BR interact very weakly. Upon formation of L, the interaction becomes stronger. The O-H bonds of the protein side chain undergo similar changes. On the other hand, M formation further weakens the interaction of the same water molecules in BR. The appearance of a sharp band at 3486 cm-1, which was assigned tentatively to the N-H stretching vibration of the peptide bond, is unique to L. The results suggest that the water molecules are involved in the perturbation of Asp-96 in the L intermediate and that they are exerted from the protonated Schiff base which changes position upon the light-induced reaction.  相似文献   

14.
Sensory rhodopsin II (SRII) in Halobacterium salinarum membranes is a phototaxis receptor that signals through its bound transducer HtrII for avoidance of blue-green light. In the present study we investigated the proton movements during the photocycle of SRII in the HtrII-free and HtrII-complexed form. We monitored sustained light-induced pH changes with a pH electrode, and laser flash-induced pH changes with the pH indicator pyranine using sealed membrane vesicles and open sheets containing the free or the complexed receptor. The results demonstrated that SRII takes up a proton in M-to-O conversion and releases it during O-decay. The uptake and release are from and to the extracellular side, and therefore SRII does not transport the proton across the membrane. The pH dependence of the SRII photocycle indicated the presence of a protonatable group (pK(a) approximately 7.5) in the extracellular proton-conducting path, which plays a role in proton uptake by the Schiff base in the M-to-O conversion. The extracellular proton circulation produced by SRII was not blocked by HtrII complexation, unlike the cytoplasmic proton conduction in SRI that was found in the same series of measurements to be blocked by its transducer, HtrI. The implications of this finding for current models of SRI and SRII signaling are discussed.  相似文献   

15.
In the photocycle of bacteriorhodopsin (BR), the first proton movement, from the Schiff base to Asp85, occurs after the formation of the L intermediate. In L, the C [double bond] N bond of the Schiff base is strained, and the nitrogen interacts strongly with its counterion. The present study seeks to detect the interaction of internal water molecules with the Schiff base in L using difference FTIR spectroscopy at 170 K. The coupled modes of the hydrogen-out-of plane bending vibrations (HOOPs) of the N-H and C(15)-H of the protonated Schiff base are detected as a broad band centered at 911 cm(-1) for BR. A set of bands at 1073, 1064, and 1056 cm(-1) for L is shown to arise from the coupling of the HOOP with the overtones of interacting water O-H vibrations. Interaction with water was shown by the decreased intensity of the HOOPs of L in H(2)(18)O and by the influence of mutants that have been shown to perturb specific internal water molecules in BR. In contrast, the HOOP band of initial BR was not affected by these mutations. In D85N, the coupled HOOP of BR is depleted, while the coupled HOOPs of L are shifted. The results indicate that the Schiff base interacts with water in the L state but in a different manner than in the BR state. Moreover, the effects of mutations suggest that cytoplasmic water close to Thr46 (Wat46) either interacts stronger with the Schiff base in L or that it is important in stabilizing another water that does.  相似文献   

16.
We studied the photochemical reaction cycle of sensory rhodopsin II (SRII) by flash photolysis of Halobacterium salinarum membranes genetically engineered to contain or to lack its transducer protein HtrII. Flash photolysis data from membranes containing HtrII were fit well in the 10 micros-10 s range by three rate constants and a linear unbranched pathway from the unphotolyzed state with 487 nm absorption maximum to a species with absorption maximum near 350 nm (M) followed by a species with maximum near 520 nm (O), as has been found in previous studies of wild-type membranes. Data from membranes devoid of HtrII exhibited similar M and O intermediates but with altered kinetics, and a third intermediate absorbing maximally near 470 nm (N) was present in an equilibrium mixture with O. The modulation of SRII photoreactions by HtrII indicates that SRII and HtrII are physically associated in a molecular complex. Arrhenius analysis shows that the largest effect of HtrII, the acceleration of O decay, is attributable to a large decrease in activation enthalpy. Based on comparison of SRII photoreactions to those of sensory rhodopsin I and bacteriorhodopsin, we interpret this kinetic effect to indicate that HtrII interacts with SRII so that it alters the reaction process involving deprotonation of Asp73, the proton acceptor from the Schiff base.  相似文献   

17.
Halobacterium salinarum sensory rhodopsin II (HsSRII) is a phototaxis receptor for blue-light avoidance that relays signals to its tightly bound transducer HsHtrII (H. salinarum haloarchaeal transducer for SRII). We found that disruption of the salt bridge between the protonated Schiff base of the receptor's retinylidene chromophore and its counterion Asp73 by residue substitutions D73A, N or Q constitutively activates HsSRII, whereas the corresponding Asp75 counterion substitutions do not constitutively activate Natronomonas pharaonis SRII (NpSRII) when complexed with N. pharaonis haloarchaeal transducer for SRII (NpHtrII). However, NpSRII(D75Q) in complex with HsHtrII is fully constitutively active, showing that transducer sensitivity to the receptor signal contributes to the phenotype. The swimming behaviour of cells expressing chimeras exchanging portions of the two homologous transducers localizes their differing sensitivities to the HtrII transmembrane domains. Furthermore, deletion constructs show that the known contact region in the cytoplasmic domain of the NpSRII-NpHtrII complex is not required for phototaxis, excluding the domain as a site for signal transmission. These results distinguish between the prevailing models for SRII-HtrII signal relay, strongly supporting the 'steric trigger-transmembrane relay model', which proposes that retinal isomerization directly signals HtrII through the mid-membrane SRII-HtrII interface, and refuting alternative models that propose signal relay in the cytoplasmic membrane-proximal domain.  相似文献   

18.
Rhodopsins possess retinal chromophore surrounded by seven transmembrane α-helices, are widespread in prokaryotes and in eukaryotes, and can be utilized as optogenetic tools. Although rhodopsins work as distinctly different photoreceptors in various organisms, they can be roughly divided according to their two basic functions, light-energy conversion and light-signal transduction. In microbes, light-driven proton transporters functioning as light-energy converters have been modified by evolution to produce sensory receptors that relay signals to transducer proteins to control motility. In this study, we cloned and characterized two newly identified microbial rhodopsins from Haloquadratum walsbyi. One of them has photochemical properties and a proton pumping activity similar to the well known proton pump bacteriorhodopsin (BR). The other, named middle rhodopsin (MR), is evolutionarily transitional between BR and the phototactic sensory rhodopsin II (SRII), having an SRII-like absorption maximum, a BR-like photocycle, and a unique retinal composition. The wild-type MR does not have a light-induced proton pumping activity. On the other hand, a mutant MR with two key hydrogen-bonding residues located at the interaction surface with the transducer protein HtrII shows robust phototaxis responses similar to SRII, indicating that MR is potentially capable of the signaling. These results demonstrate that color tuning and insertion of the critical threonine residue occurred early in the evolution of sensory rhodopsins. MR may be a missing link in the evolution from type 1 rhodopsins (microorganisms) to type 2 rhodopsins (animals), because it is the first microbial rhodopsin known to have 11-cis-retinal similar to type 2 rhodopsins.  相似文献   

19.
The two transducers in the phototaxis system of the archaeon Halobacterium salinarum, HtrI and HtrII, are methyl-accepting proteins homologous to the chemotaxis transducers in eubacteria. Consensus sequences predict three glutamate pairs containing potential methylation sites in HtrI and one in HtrII. Mutagenic substitution of an alanine pair for one of these, Glu265-Glu266, in HtrI and for the homologous Glu513-Glu514 in HtrII eliminated methylation of these two transducers, as demonstrated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis autofluorography. Photostimulation of the repellent receptor sensory rhodopsin II (SRII) induced reversible demethylation of HtrII, while no detectable change in the extent of methylation of HtrI was observed in response to stimulation of its cognate sensory rhodopsin, the attractant receptor SRI. Cells containing HtrI or HtrII with all consensus sites replaced by alanine still exhibited phototaxis responses and behavioral adaptation, and methanol release assays showed that methyl group turnover was still induced in response to photostimulation of SRI or SRII. By pulse-chase experiments with in vivo L-[methyl-(3)H]methionine-labeled cells, we found that repetitive photostimulation of SRI complexed with wild-type (or nonmethylatable) HtrI induced methyl group turnover in transducers other than HtrI to the same extent as in wild-type HtrI. Both attractant and repellent stimuli cause a transient increase in the turnover rate of methyl groups in wild-type H. salinarum cells. This result is unlike that obtained with Escherichia coli, in which attractant stimuli decrease and repellent stimuli increase turnover rate, and is similar to that obtained with Bacillus subtilis, which also shows turnover rate increases regardless of the nature of the stimulus. We found that a CheY deletion mutant of H. salinarum exhibited the E. coli-like asymmetric pattern, as has recently also been observed in B. subtilis. Further, we demonstrate that the CheY-dependent feedback effect does not require the stimulated transducer to be methylatable and operates globally on other transducers present in the cell.  相似文献   

20.
The all-trans to 13-cis photoisomerization of the retinal chromophore of bacteriorhodopsin occurs selectively, efficiently, and on an ultrafast time scale. The reaction is facilitated by the surrounding protein matrix which undergoes further structural changes during the proton-transporting reaction cycle. Low-temperature polarized Fourier transform infrared difference spectra between bacteriorhodopsin and the K intermediate provide the possibility to investigate such structural changes, by probing O-H and N-H stretching vibrations [Kandori, Kinoshita, Shichida, and Maeda (1998) J. Phys. Chem. B 102, 7899-7905]. The measurements of [3-18O]threonine-labeled bacteriorhodopsin revealed that one of the D2O-sensitive bands (2506 cm(-1) in bacteriorhodopsin and 2466 cm(-1) in the K intermediate, in D2O exhibited 18(O)-induced isotope shift. The O-H stretching vibrations of the threonine side chain correspond to 3378 cm(-1) in bacteriorhodopsin and to 3317 cm(-1) in the K intermediate, indicating that hydrogen bonding becomes stronger after the photoisomerization. The O-H stretch frequency of neat secondary alcohol is 3340-3355 cm(-1). The O-H stretch bands are preserved in the T46V, T90V, T142N, T178N, and T205V mutant proteins, but diminished in T89A and T89C, and slightly shifted in T89S. Thus, the observed O-H stretching vibration originates from Thr89. This is consistent with the atomic structure of this region, and the change of the S-H stretching vibration of the T89C mutant in the K intermediate [Kandori, Kinoshita, Shichida, Maeda, Needleman, and Lanyi (1998) J. Am. Chem. Soc. 120, 5828-5829]. We conclude that all-trans to 13-cis isomerization causes shortening of the hydrogen bond between the OH group of Thr89 and a carboxyl oxygen atom of Asp85.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号