首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
NKT cells from C57Bl/6 mice are known to be the initial cellular source of IL-4 that acts as a trigger for Th2 cell differentiation. CC-chemokine ligand 2 (CCL2) has been described as an initial stimulator of IL-4 production by these cells; however, IL-4 was not produced by NKT cells from BALB/c mice even when Th2 cell responses were established in these mice. In this study, we found a new pathway for CCL2-associated Th2 cell generation in BALB/c mice. Splenic T cells from BALB/c mice produced IL-4 in response to CCL2 stimulation. However, IL-4 production was not seen in cultures of splenic T cells from CD1-/- mice (BALB/c origin), whereas, in the presence of CCL2, splenic T cells from CD1-/- mice produced IL-4 when NKT cells from wild-type mice were added. CCL2 induced IL-4 in cultures of NKT cells cocultured with naive T cells, but IL-4 was not produced by these cells cultured separately with CCL2. Interestingly, IL-4 was produced by naive T cells cocultured with NKT cells that were previously treated with CCL2 (CCL2-NKT cells). In addition, IL-4 was produced by naive T cells supplemented with a culture supernatant of CCL2-NKT cells. These results indicate that, through the production of a soluble factor(s) other than IL-4, NKT cells play a role in the CCL2-associated generation of Th2 cells.  相似文献   

8.
9.
Mice infected with Schistosoma mansoni develop polarized Th2 responses in which Th1 responses are prevented by IL-10-mediated suppression of IL-12 production. We show that dendritic cells from infected mice are primed to make IL-12 in response to CD40 ligation, and that IL-10 acts by inhibiting this process. In infected mice, two subpopulations of CD4(+) cells, separable by their expression of CD25, make IL-10. CD25(+)CD4(+) cells expressed forkhead box P3, inhibited proliferation of CD4(+) T cells, and made IL-10, but little IL-5. In contrast, CD25(-)CD4(+) cells failed to express forkhead box P3 or to inhibit proliferation and accounted for all the IL-5, IL-6, and IL-13 produced by unseparated splenic populations. Thus, CD25(+) and CD25(-) subpopulations could be characterized as regulatory T cells (Treg cells) and Th2 cells, respectively. Consistent with their ability to make IL-10, both CD25(+) and CD25(-)CD4(+) T cells from infected mice were able, when stimulated with egg Ag, to suppress IL-12 production by CD40 agonist-stimulated dendritic cells. Additionally, in adoptive transfer experiments, both CD4(+) subpopulations of cells were able to partially inhibit the development of Th1 responses in egg-immunized IL-10(-/-) mice. The relationship of Treg cells in infected mice to natural Treg cells was strongly suggested by the ability of CD25(+)CD4(+) cells from naive mice to inhibit Th1 response development when transferred into egg-immunized or infected IL-10(-/-) mice. The data suggest that natural Treg cells and, to a lesser extent, Th2 cells play roles in suppressing Th1 responses and ensuring Th2 polarization during schistosomiasis.  相似文献   

10.
The Th2 cytokine IL-13 is a major effector molecule in human allergic inflammation. Notably, IL-13 expression at birth correlates with subsequent susceptibility to atopic disease. In order to characterize the chromatin-based mechanisms that regulate IL-13 expression in human neonatal CD4(+) T cells, we analyzed patterns of DNase I hypersensitivity and epigenetic modifications within the IL-13 locus in cord blood CD4(+) T cells, naive or differentiated in vitro under Th1- or Th2-polarizing conditions. In naive CD4(+) T cells, hypersensitivity associated with DNA hypomethylation was limited to the distal promoter. Unexpectedly, during both Th1 and Th2 differentiation, the locus was extensively remodeled, as revealed by the formation of numerous HS sites and decreased DNA methylation. Obvious differences in chromatin architecture were limited to the proximal promoter, where strong hypersensitivity, hypomethylation, and permissive histone modifications were found selectively in Th2 cells. In addition to revealing the locations of putative cis-regulatory elements that may be required to control IL-13 expression in neonatal CD4(+) T cells, our results suggest that differential IL-13 expression may depend on the acquisition of a permissive chromatin architecture at the proximal promoter in Th2 cells rather than the formation of locus-wide repressive chromatin in Th1 cells.  相似文献   

11.
12.
The source of IL-4 required for priming naive T cells into IL-4-secreting effectors has not been clearly identified. Here we show that upon TCR stimulation, thymus NK1-CD4+8- T cells produced IL-4, the magnitude of which was inversely correlated with age. This IL-4 production response by Th2-prone BALB/c mice was approximately 9-fold that of Th1-prone C57BL/10 mice. More than 90% of activated NK1-CD4+8- thymocytes did not use the invariant V alpha 14-J alpha 281 chain characteristic of typical CD1-restricted NK1+CD4+ T cells. Stat6-null NK1-CD4+8- thymocytes produced bioactive IL-4, with induction of IL-4 mRNA expression within 1 h of stimulation. Our results support the possibility that TCR repertoire-diverse conventional NK1-CD4+ T cells are a potential IL-4 source for directing naive T cells toward Th2/type 2 CD8+ T cell (Tc2) effector development.  相似文献   

13.
A proportional balance between αβ and γδ T-cell subsets in the periphery is exceedingly well maintained by a homeostatic mechanism. However, a cellular mechanism underlying the regulation remains undefined. We recently reported that a subset of developing γδ T cells spontaneously acquires interleukin (IL)-17-producing capacity even within naive animals through a transforming growth factor (TGF)β1-dependent mechanism, thus considered 'innate' IL-17-producing cells. Here, we report that γδ T cells generated within αβ T cell (or CD4 T cell)-deficient environments displayed altered cytokine profiles; particularly, 'innate' IL-17 expression was significantly impaired compared with those in wild-type mice. Impaired IL-17 production in γδ T cells was directly related to CD4 T-cell deficiency, because depletion of CD4 T cells in wild-type mice diminished and adoptive CD4 T-cell transfer into T-cell receptor β-/- mice restored IL-17 expression in γδ T cells. CD4 T cell-mediated IL-17 expression required TGFβ1. Moreover, Th17 but not Th1 or Th2 effector CD4 T cells were highly efficient in enhancing γδ T-cell IL-17 expression. Taken together, our results highlight a novel CD4 T cell-dependent mechanism that shapes the generation of IL-17+ γδ T cells in naive settings.  相似文献   

14.
Compelling evidence has now demonstrated that IL-17-producing CD4 cells (Th17) are a major contributor to autoimmune pathogenesis, whereas CD4+CD25+ T regulatory cells (Treg) play a major role in suppression of autoimmunity. Differentiation of proinflammatory Th17 and immunosuppressive Treg from naive CD4 cells is reciprocally related and contingent upon the cytokine environment. We and others have reported that in vivo administration of pertussis toxin (PTx) reduces the number and function of mouse Treg. In this study, we have shown that supernatants from PTx-treated mouse splenic cells, which contained IL-6 and other proinflammatory cytokines, but not PTx itself, overcame the inhibition of proliferation seen in cocultures of Treg and CD4+CD25- T effector cells. This stimulatory effect could be mimicked by individual inflammatory cytokines such as IL-1beta, IL-6, and TNF-alpha. The combination of these cytokines synergistically stimulated the proliferation of CD4+CD25- T effector cells despite the presence of Treg with a concomitant reduction in the percentage of FoxP3+ cells and generation of IL-17-expressing cells. PTx generated Th17 cells, while inhibiting the differentiation of FoxP+ cells, from naive CD4 cells when cocultured with bone marrow-derived dendritic cells from wild-type mice, but not from IL-6-/- mice. In vivo treatment with PTx induced IL-17-secreting cells in wild-type mice, but not in IL-6-/- mice. Thus, in addition to inhibiting the development of Treg, the immunoadjuvant activity of PTx can be attributable to the generation of IL-6-dependent IL-17-producing CD4 cells.  相似文献   

15.
16.
17.
CD4+ T cells, particularly Th2 cells, play a pivotal role in allergic airway inflammation. However, the requirements for interactions between CD4+ and CD8+ T cells in airway allergic inflammation have not been delineated. Sensitized and challenged OT-1 mice in which CD8+ T cells expressing the transgene for the OVA(257-264) peptide (SIINFEKL) failed to develop airway hyperresponsiveness (AHR), airway eosinophilia, Th2 cytokine elevation, or goblet cell metaplasia. OT-1 mice that received naive CD4+IL-4+ T cells but not CD4+IL-4- T cells before sensitization developed all of these responses to the same degree as wild-type mice. Moreover, recipients of CD4+IL-4+ T cells developed significant increases in the number of CD8+IL-13+ T cells in the lung, whereas sensitized OT-1 mice that received primed CD4+ T cells just before challenge failed to develop these responses. Sensitized CD8-deficient mice that received CD8+ T cells from OT-1 mice that received naive CD4+ T cells before sensitization increased AHR and eosinophil numbers in bronchoalveolar lavage fluid when challenged with allergen. In contrast, sensitized CD8-deficient mice receiving CD8+ T cells from OT-1 mice without CD4+ T cells developed reduced AHR and eosinophil numbers in bronchoalveolar lavage fluid when challenged. These data suggest that interactions between CD4+ and CD8+ T cells, in part through IL-4 during the sensitization phase, are essential to the development of CD8+IL-13+ T cell-dependent AHR and airway allergic inflammation.  相似文献   

18.
IL-10 is an immunoregulatory cytokine expressed by numerous cell types. Studies in mice confirm that different IL-10-expressing cell subsets contribute differentially to disease phenotypes. However, little is known about the relationship between cell- or tissue-specific IL-10 expression and disease susceptibility in humans. In this study, we used the previously described human (h)IL10BAC transgenic model to examine the role of hIL-10 in maintaining intestinal homeostasis. Genomically controlled hIL-10 expression rescued Il10(-/-) mice from Helicobacter-induced colitis and was associated with control of proinflammatory cytokine expression and Th17 cell accumulation in gut tissues. Resistance to colitis was associated with an accumulation of hIL-10-expressing CD4(+)Foxp3(+) regulatory T cells specifically within the lamina propria but not other secondary lymphoid tissues. Cotransfer of CD4(+)CD45RB(lo) cells from Il10(-/-)/hIL10BAC mice rescued Rag1(-/-) mice from colitis, further suggesting that CD4(+) T cells represent a protective source of hIL-10 in the colon. In concordance with an enhanced capacity to express IL-10, CD4(+)CD44(+) T cells isolated from the lamina propria exhibited lower levels of the repressive histone mark H3K27Me3 and higher levels of the permissive histone mark acetylated histone H3 in both the human and mouse IL10 locus compared with the spleen. These results provide experimental evidence verifying the importance of T cell-derived hIL-10 expression in controlling inflammation within the colonic mucosa. We also provide molecular evidence suggesting the tissue microenvironment influences IL-10 expression patterns and chromatin structure in the human (and mouse) IL10 locus.  相似文献   

19.
The role of CTLA-4 in regulating Th2 differentiation.   总被引:13,自引:0,他引:13  
To examine the role of CTLA-4 in Th cell differentiation, we used two newly generated CTLA-4-deficient (CTLA-4-/-) mouse strains: DO11. 10 CTLA-4-/- mice carrying a class II restricted transgenic TCR specific for OVA, and mice lacking CTLA-4, B7.1 and B7.2 (CTLA-4-/- B7.1/B7.2-/- ). When purified naive CD4+ DO11.10 T cells from CTLA-4-/- and wild-type mice were primed and restimulated in vitro with peptide Ag, CTLA-4-/- DO11.10 T cells developed into Th2 cells, whereas wild-type DO11.10 T cells developed into Th1 cells. Similarly, when CTLA-4-/- CD4+ T cells from mice lacking CTLA-4, B7. 1, and B7.2 were stimulated in vitro with anti-CD3 Ab and wild-type APC, these CTLA-4-/- CD4+ T cells produced IL-4 even during the primary stimulation, whereas CD4+ cells from B7.1/B7.2-/- mice did not produce IL-4. Upon secondary stimulation, CD4+ T cells from CTLA-4-/- B7.1/B7.2-/- mice secreted high levels of IL-4, whereas CD4+ T cells from B7.1/B7.2-/- mice produced IFN-gamma. In contrast to the effects on CD4+ Th differentiation, the absence of CTLA-4 resulted in only a modest effect on T cell proliferation, and increased proliferation of CTLA-4-/- CD4+ T cells was seen only during secondary stimulation in vitro. Administration of a stimulatory anti-CD28 Ab in vivo induced IL-4 production in CTLA-4-/- B7.1/B7.2-/- but not wild-type mice. These studies demonstrate that CTLA-4 is a critical and potent inhibitor of Th2 differentiation. Thus, the B7-CD28/CTLA-4 pathway plays a critical role in regulating Th2 differentiation in two ways: CD28 promotes Th2 differentiation while CTLA-4 limits Th2 differentiation.  相似文献   

20.
IL-27 is a novel IL-12 family member that plays a role in the early regulation of Th1 initiation, induces proliferation of naive CD4+ T cells, and synergizes with IL-12 in IFN-gamma production. It has been recently reported that IL-27 induces T-bet and IL-12Rbeta2 expression through JAK1/STAT1 activation. In the present study, we further investigated the JAK/STAT signaling molecules activated by IL-27 and also the role of STAT1 in IL-27-mediated responses using STAT1-deficient mice. In addition to JAK1 and STAT1, IL-27-activated JAK2, tyrosine kinase-2, and STAT2, -3, and -5 in naive CD4+ T cells. The activation of STAT2 and STAT5, but not of STAT3, was greatly diminished in STAT1-deficient naive CD4+ T cells. Comparable proliferative response to IL-27 was observed between STAT1-deficient and wild-type naive CD4+ T cells. In contrast, IL-27 hardly induced T-bet and subsequent IL-12Rbeta2 expression, and synergistic IFN-gamma production by IL-27 and IL-12 was impaired in STAT1-deficient naive CD4+ T cells. Moreover, IL-27 augmented the expression of MHC class I on naive CD4+ T cells in a STAT1-dependent manner. These results suggest that IL-27 activates JAK1 and -2, tyrosine kinase-2, STAT1, -2, -3, and -5 in naive CD4+ T cells and that STAT1 plays an indispensable role in IL-27-induced T-bet and subsequent IL-12Rbeta2 expression and MHC class I expression as well but not proliferation, while STAT3 presumably plays an important role in IL-27-induced proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号