首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Evidence is presented that rat liver microsomal fatty acid chain elongation synthesis and desaturation, as well as acetyl-CoA carboxylase and fatty acid synthetase, are strongly influenced by thyroid hormone level. Conversely, the fatty acid chain elongation system in mitochondria, unlike the oxidative capacity of palmitate, NADH, succinate and malate, does not seem significantly affected by the thyrotoxic state. In triiodothyronine-induced or thyroxine-induced hyperthyroidism, rat liver acetyl-CoA carboxylase, fatty acid synthetase and microsomal chain elongation and desaturation reactions are not greatly affected after the first 10 days of treatment, while after longer intervals a respective increase in these activities is shown of up to 87, 116 and 65% after 22 days. In propylthiouracil-induced hypothyroidism, all the above synthetic activities are strongly reduced immediately after three days of drug administration and diminished no further following longer periods. Although the pattern of synthesized fatty acids in the thyrotoxic state is similar to that obtained from normal subcellular rat fractions, the esterification process of fatty acids in microsomal lipids appears to be slightly inhibited in hypothyroid rats and increased following triiodothyronine or thyroxine administration. Finally, a reduction in the hepatic cyclic AMP level of about 41% is reported after 19 days of triiodothyronine-administration to rats. On the basis of the observed insensitivity of the mitochondrial fatty acid chain elongation system to the thyrotoxic state, a tentative interpretation of its role in the hepatic cell is postulated.  相似文献   

3.
The feeding of 2% di(2-ethylhexyl)phthalate (DEHP) to rats increased the hepatic microsomal elongation of palmitoyl-CoA by about twofold, while those of palmitoleoyl-CoA and gamma-linolenoyl-CoA decreased to 83 and 63%, respectively, of the control values. When component reactions of the elongation pathway were measured, it was observed that only the activity of condensing enzyme was increased by twofold, while those of beta-ketostearoyl-CoA reductase, beta-hydroxypalmitoyl-CoA dehydrase, and trans-2-hexadecenoyl-CoA reductases were not affected. Furthermore, the time course for induction of both condensation and elongation of palmitoyl-CoA was similar. In vitro addition of DEHP had no effect on either condensation or elongation. Thus, these results indicate that the peroxisomal proliferator induces only the condensing enzyme which is the regulatory and rate-limiting step of elongation sequence. The DEHP treatment also markedly enhanced the cytosolic NADPH-generating activities of glucose-6-PO4 dehydrogenase (2.2-fold) and malic enzyme (7.3-fold). Unexpectedly, the activities of fatty acid synthetase and citrate cleavage enzyme were unaffected. These results are discussed in light of the fact that these lipogenic enzymes are coordinately induced by diet or hormones.  相似文献   

4.
Malate has a number of key roles in the brain, including its function as a tricarboxylic acid (TCA) cycle intermediate, and as a participant in the malate-aspartate shuttle. In addition, malate is converted to pyruvate and CO2 via malic enzyme and may participate in metabolic trafficking between astrocytes and neurons. We have previously demonstrated that malate is metabolized in at least two compartments of TCA cycle activity in astrocytes. Since malic enzyme contributes to the overall regulation of malate metabolism, we determined the activity and kinetics of the mitochondrial and cytosolic forms of this enzyme from cultured astrocytes. Malic enzyme activity measured at 37°C in the presence of 0.5 mM malate was 4.15±0.47 and 11.61±0.98 nmol/min/mg protein, in mitochondria and cytosol, respectively (mean±SEM, n=18–19). Malic enzyme activity was also measured in the presence of several endogenous compounds, which have been shown to alter intracellular malate metabolism in astrocytes, to determine if these compounds affected malic enzyme activity. Lactate inhibited cytosolic malic enzyme by a noncompetitive mechanism, but had no effect on the mitochondrial enzyme. -Ketoglutarate inhibited both cytosolic and mitochondrial malic enzymes by a partial noncompetitive mechanism. Citrate inhibited cytosolic malic enzyme competitively and inhibited mitochondrial malic enzyme noncompetitively at low concentrations of malate, but competitively at high concentrations of malate. Both glutamate and aspartate decreased the activity of mitochondrial malic enzyme, but also increased the affinity of the enzyme for malate. The results demonstrate that mitochondrial and cytosolic malic enzymes have different kinetic parameters and are regulated differently by endogenous compounds previously shown to alter malate metabolism in astrocytes. We propose that malic enzyme in brain has an important role in the complete oxidation of anaplerotic compounds for energy.These data were presented in part at the meeting of the American Society for Neurochemistry in Richmond, Virginia, March 1993  相似文献   

5.
We have studied the influence of experimental hyperthyroidism in the rat on the synthesis of unsaturated fatty acids and on liver microsomal lipid fatty-acid composition. Tri-iodothyronine treatment (25 micrograms/100 g body weight) daily for 3 weeks caused no significant changes in delta 9 (stearate) desaturation but a 24% decrease in delta 6 (linoleate) desaturation. Much larger doses of tri-iodothyronine increased delta 9 desaturation. Liver microsomal fatty-acid composition in hyperthyroidism is altered with significantly increased proportions of stearate and arachidonate and decreased proportions of palmitate, palmitoleate, linoleate (C18:2) and eicosa-8,11,14-trienoate (C20:3). These changes, other than the decreases proportion of C20:3 fatty acid, which may be due to the diminished delta 6 desaturase activity, cannot be attributed to changes in fatty-acid desaturation. Most of these changes were also found to be due not simply to the decreased weight gain or the increased food intake of the hyperthyroid animals. Only the decreased C18:2 fatty-acid proportions could be mimicked by restricting food intake of control animals and none of the changes were prevented by restricting food intake of hyperthyroid animals. Thus most of the changes in microsomal lipid fatty-acid composition are likely to be due to a thyroid hormone effect on peripheral lipid mobilization or lipid degradation.  相似文献   

6.
Adrenal cortex mitochondria prepared by a standard method do not exhibit malic enzyme activity. Addition of physiological concentrations of Ca2+ and Mg2+ enables these mitochondria to reduce added NADP+ by malate to form free NADPH. Half-maximum activation of the mitochondrial malic enzyme requires 0.3 mM Ca2+ and 1 mM Mg2+. Solubilized mitochondrial malic enzymes is independent of Ca2+ and has a K M of 0.2 mM for Mg2+. The Ca2+ effect is dependent on an initial period of active Ca2+ uptake which also causes other changes in respiratory properties similar to those observed with mitochondria from other tissues. After Ca2+ accumulation has taken place, free Ca2+, but not additional accumulation, is still required for malic enzyme activity. The requirement for Mg2+ can be met by Mn2+ (1 mM). This concentration of Mn2+ alone yielded only a slight activation of mitochondrial malic enzyme while higher concentrations of Mn2+ alone gave good activation of the mitochondrial malic enzy.e The NADPH generated by the Ca2+-Mg2+ activated malic enzyme effectively supports the 11beta-hydroxylation of deoxycorticosterone, whereas in the presence of malate, or malate plus Mg2+ but absence of Ca2+, the energy linked transhydrogenase supplies all the required NADPH. The activated malic enzyme appears to be more efficient than transhydrogenase in generating NADPH to support 11beta-hydroxylation. Cyanide and azide have been found to inhibit solubilized mitochondrial malic enzyme.  相似文献   

7.
The maximal extractable activity of "malic" enzyme (EC 1.1.1.40) in rat islets of Langerhans was similar to that reported for liver. Thus "malic" enzyme may catalyse a near-equilibrium reaction in the cytosol of islets of Langerhans. Measurements of islet content of malate and pyruvate, the metabolite substrate and product of "malic" enzyme, were therefore used to calculate the cytosolic ration of [NADPH]/[NADP+]. This ratio was higher in islets incubated with 20 mM-glucose than in islets incubated with 2 mM-glucose.  相似文献   

8.
The oxidation of exogenously added substrates has been studied in intact liver mitochondria isolated from the American eel, Anguilla rostrata. These data, coupled to determinations of the activity and localization of critical tricarboxylic acid (TCA) cycle enzymes, have been used to propose a pathway for the eel liver TCA cycle. (1) Isocitric, α-ketoglutaric, succinic, and malic acids are oxidized at essentially equivalent rates by eel mitochondria, with normal ADP:O and respiratory control ratios. No oxidation of citric, oxaloacetic, or pyruvic acids was detected when added alone or with malate, although oxaloacetic acid + pyruvic acid was oxidized but at a much reduced rate. (2) Radioactively labeled isocitrate was incorporated into at least α-ketoglutaric, succinic, and malic acids, indicating the eel liver TCA cycle is normal between isocitrate and malate. (3) No activity of the NAD-linked isocitrate dehydrogenase (IDH) could be detected, but NADP-IDH activities were higher in the mitochondria than cytosolic fractions. An active NADPH:NAD transhydrogenase was localized to the mitochondrial compartment. (4) These data suggest an important role for the NADP-IDH:transhydrogenase enzyme couple in eel liver TCA cycle function, and a pathway incorporating these ideas is proposed.  相似文献   

9.
A steady state model has been applied to the pathways of NADPH formation and utilization in rat liver, including the A or B stereospecificities of the dehydrogenases involved. The tritium distribution between fatty acids and cholesterol was calculated with alternate substrates e ither [3T]glucose (which produces initially [4B-T]NADPH in the pentose cycle) or l-[2T]malate (which produces initially [4A-T]NADPH in the malic enzyme reaction). The calculated results are similar to published experimental results (M. S. Kong and B. R. Landau, 1977, Arch. Biochem. Biophys.180, 69–74). These results are thus shown to be consistent with a single cytosolic pool of NADPH. However, the calculations neglect possible isotope discrimination effects, and also possible NADH contribution to cholesterol synthesis.  相似文献   

10.
P. Rustin  C. Queiroz-Claret 《Planta》1985,164(3):415-422
Kalanchoe blossfeldiana plants grown under long days (16 h light) exhibit a C3-type photosynthetic metabolism. Switching to short days (9 h light) leads to a gradual development of Crassulacean acid metabolism (CAM). Under the latter conditions, dark CO2 fixation produces large amounts of malate. During the first hours of the day, malate is rapidly decarboxylated into pyruvate through the action of a cytosolic NADP+-or a mitochondrial NAD+-dependent malic enzyme. Mitochondria were isolated from leaves of plants grown under long days or after treatment by an increasing number of short days. Tricarboxylic acid cycle intermediates as well as exogenous NADH and NADPH were readily oxidized by mitochondria isolated from the two types of plants. Glycine, known to be oxidized by C3-plant mitochondria, was still oxidized after CAM establishment. The experiments showed a marked parallelism in the increase of CAM level and the increase in substrate-oxidation capacity of the isolated mitochondria, particularly the capacity to oxidize malate in the presence of cyanide. These simultaneous variations in CAM level and in mitochondrial properties indicate that the mitochondrial NAD+-malic enzyme could account at least for a part of the oxidation of malate. The studies of whole-leaf respiration establish that mitochondria are implicated in malate degradation in vivo. Moreover, an increase in cyanide resistance of the leaf respiration has been observed during the first daylight hours, when malate was oxidized to pyruvate by cytosolic and mitochondrial malic enzymes.Abbreviations CAM Crassulacean acid metabolism - MDH malate dehydrogenase - ME malic enzyme  相似文献   

11.
The enzyme activities associated with chain elongation and desaturation of fatty acid in hepatic microsomes from rats held at 1 ATA of air, 1 ATA of He-O2, and 20 ATA of He-O2 were studied. It was found that both the microsomal chain elongation and desaturation of fatty acids were depressed in rats held at 1 ATA of He-O2 as compared to animals held at 1 ATA of air. When animals were exposed to an environment of 20 ATA of He-O2, the chain elongation of fatty acid was about the same as for rats held at 1 ATA of air and was two times greater than for the rats held at 1 ATA of He-O2. The desaturase activity was depressed as compared to the two groups of control animals held at 1 ATA of air and 1 ATA of He-O2.  相似文献   

12.
Two malic enzymes in Pseudomonas aeruginosa   总被引:1,自引:1,他引:0       下载免费PDF全文
Cell-free extract supernatant fluids of Pseudomonas aeruginosa were shown to lack malic dehydrogenase but possess a nicotinamide adenine dinucleotide (NAD)- or NAD phosphate (NADP)-dependent enzymatic activity, with properties suggesting a malic enzyme (malate + NAD (NADP) --> pyruvate + reduced NAD (NADH) (reduced NADP [NADPH] + CO(2)), in agreement with earlier findings. This was confirmed by determining the nature and stoichiometry of the reaction products. Differences in heat stability and partial purification of these activities demonstrated the existence of two malic enzymes, one specific for NAD and the other for NADP. Both enzymes require bivalent metal cations for activity, Mn(2+) being more effective than Mg(2+). The NADP-dependent enzyme is activated by K(+) and low concentrations of NH(4) (+). Both reactions are reversible, as shown by incubation with pyruvate, CO(2), NADH, or NADPH and Mn(2+). The molecular weights of the enzymes were estimated by gel filtration (270,000 for the NAD enzyme and 68,000 for the NADP enzyme) and by sucrose density gradient centrifugation (about 200,000 and 90,000, respectively).  相似文献   

13.
Several key enzymes related to carbohydrate metabolism were assayed in Setaria digitata. In the cytosolic fraction pyruvate kinase, phosphoenolpyruvate carboxykinase, malate dehydrogenase, malic enzyme, aspartate transaminase and alanine transaminase were found. Among the TCA cycle enzymes succinate dehydrogenase, fumarate reductase, fumarase (malate dehydration), malate dehydrogenase (malate oxidation and oxaloacetate reduction) and malic enzyme (malate decarboxylation) were detected in the mitochondrial fraction. Only reduced nicotinamide adenine dinucleotide (NADH) dehydrogenase, NADH oxidase and NADH-cytochrome c reductase were found in the mitochondrial fraction. The significance of these results with respect to the metabolic capabilities of the worm are discussed.  相似文献   

14.
Acetyl-coenzyme A carboxylase from Euglena gracilis strain Z was isolated as a component of a multienzyme complex which includes phosphoenolpyruvate carboxylase and malate dehydrogenase. The multienzyme complex was shown to exist in crude extracts and was purified to a homogeneous protein with a molecular weight of 360,000 by gel filtration. The ratio of the activities of the constituent enzymes was acetyl-CoA carboxylase:phosphoenolpyruvate carboxylase:malate dehydrogenase, 1:25:500. The complex is proposed to operate in conjunction with malic enzyme, which is present in Euglena, to facilitate the formation of substrates, malonyl-CoA, and NADPH, for fatty acid biosynthesis. The interaction of the enzymes may represent a means of control of acetyl-CoA carboxylase activity in organisms which do not possess an enzyme subject to allosteric regulation. The acetyl-CoA carboxylase activity from Euglena is unaffected by citrate and isocitrate.  相似文献   

15.
1. The effects of unsaturated fatty acids on drug-metabolizing enzymes in vitro were measured by using rat and rabbit hepatic 9000g supernatant fractions. 2. Unsaturated fatty acids inhibited the hepatic microsomal metabolism of ;type I' drugs with inhibition increasing with unsaturation: arachidonic acid>linolenic acid>linoleic acid>oleic acid. Inhibition was independent of lipid peroxidation. Linoleic acid competitively inhibited the microsomal O-demethylation of p-nitroanisole and the N-demethylation of (+)-benzphetamine. 3. The hepatic microsomal metabolism of ;type II' substrates, aniline and (-)-amphetamine, was not affected by unsaturated fatty acids. 4. The rate of reduction of p-nitrobenzoic acid and Neoprontosil was accelerated by unsaturated fatty acids. 5. Linoleic acid up to 3.5mm did not decelerate the generation of NADPH by rat liver soluble fraction, nor the activity of NADPH-cytochrome c reductase of rat liver microsomes. Hepatic microsomal NADPH oxidase activity was slightly enhanced by added linoleic acid. 6. No measurable disappearance of exogenously added linoleic acid occurred when this fatty acid was incubated with rat liver microsomes and an NADPH source. 7. The unsaturated fatty acids used in this study produced type I spectra when added to rat liver microsomes, and affected several microsomal enzyme activities in a manner characteristic of type I ligands.  相似文献   

16.
The level of unsaturation of the constituent fatty acids of many glycerolipids in plant membranes is modified by environmental factors. The measurement of the rate of the desaturation of these fatty acids is essential to an understanding of how plants adapt to changing environments. This is difficult because of the complexity of the system and the problems involved in measuring rates of these enzyme reactions in cell-free preparations. A computer program has been developed that simulates the synthesis of galactosyldiacylglycerols and desaturation of their fatty acids in chloroplasts. The program uses the rate of incorporation and distribution of 14C in fatty acids after 14CO2 feeding to estimate rates of desaturation in the fatty acids of glycerolipids. Data are presented to demonstrate the use of the program in comparing rates of desaturation in the five enzyme reactions associated with monogalactosyldiacylglycerol in the chloroplastic pathway of leaves from Brassica napus. The method represents a quick, reliable, and accurate measure of desaturase activity in vivo and is the only method available to estimate desaturase activity of all five enzymes at the same time.  相似文献   

17.
Some properties of a microsomal oleate desaturase from leaves.   总被引:13,自引:0,他引:13       下载免费PDF全文
1. When [1-14C]oleoyl-CoA was incubated with a pea-leaf homogenate oleate was both incorporated into microsomal 3-sn-phosphatidylcholine and released as the unesterified fatty acid. The proportion of oleate incorporated into this phospholipid was dependent on the relative amounts of thiol ester and microsomal preparation present in reactions. 2. At the concentrations of microsomal preparation and [14C]oleoyl-CoA used to study oleate desaturation the metabolism of the thiol ester was essentially complete after 5 min incubation, but the loss of label from 3-sn-phosphatidylcholine oleate and the concomitant increase in radioactivity in the linoleate of this phospholipid proceeded at approximately linear rates over a 60 min period. The kinetics of labelling of unesterified linoleate was consistent with the view that this labelled fatty acid was derived from 3-sn-phosphatidylcholine. 3. Oleate desaturation required oxygen and with unwashed microsomal fractions was stimulated either by NADPH or by the 105 000g supernatant. Washed microsomal preparations did not catalyse desaturation, but actively was restored by the addition of NADPH, 105 000G supernatant or Sephadex-treated supernatant. NADPH could be replaced by NADH or NADP+, but not by NAD+. 4. Microsomal fractions from mature and immature maize lamina and expanding spinach leaves also rapidly incorporated oleate from ([14C]oleoyl-CoA into 3-sn-phosphatidylcholine, but desaturation of 3-sn-phosphatidylcholine oleate was detected only with microsomal preparations from immature maize lamina. 5. It is proposed that leaf microsomal preparations posses an oleate desaturase for which 3-sn-phosphatidylcholine oleate is either the substrate or an immediate precursor of the substrate.  相似文献   

18.
The de novo synthesis of fatty acids occurs in two distinct cellular compartments. Palmitate (16:0) is synthesized from acetyl-CoA and malonyl-CoA in the cytoplasm by the enzymes acetyl-CoA carboxylase 1 and fatty acid synthase. The synthesis of fatty acids longer than 16 carbons takes place in microsomes and utilizes malonyl-CoA as the carbon source. Each two-carbon addition requires four sequential reactions: condensation, reduction, dehydration, and a final reduction to form the elongated fatty acyl-CoA. The initial condensation reaction is the regulated and rate-controlling step in microsomal fatty acyl elongation. We previously reported the cDNA cloning and characterization of a murine long chain fatty acyl elongase (LCE) . Overexpression of LCE in cells resulted in the enhanced addition of two-carbon units to C12-C16 fatty acids, and evidence was provided that LCE catalyzed the initial condensation reaction of long chain fatty acid elongation. The remaining three enzymes in the elongation reaction have not been identified in mammals. Here, we report the identification and characterization of two mammalian enzymes that catalyze the 3-ketoacyl-CoA and trans-2,3-enoyl-CoA reduction reactions in long and very long chain fatty acid elongation, respectively.  相似文献   

19.
Feeding the thermogenic steroid, 5-androsten-3 beta-ol-17-one (dehydroepiandrosterone, DHEA) in the diet of rats induced the synthesis of liver mitochondrial sn-glycerol 3-phosphate dehydrogenase to levels three to five times that of control rats within 7 days. The previously reported enhancement of liver cytosolic malic enzyme was confirmed. The induction of both enzymes was detectable at 0.01% DHEA in the diet, reached plateau stimulation at 0.1 to 0.2%, and was completely blocked by simultaneous treatment with actinomycin D. Feeding DHEA caused smaller, but statistically significant increases of liver cytosolic lactate, sn-glycerol 3-phosphate, and isocitrate (NADP(+)-linked) dehydrogenases but not of malate or glucose 6-phosphate dehydrogenases. The capability of DHEA to enhance mitochondrial glycerophosphate dehydrogenase and malic enzyme was influenced by the thyroid status of the rats; was smallest in thyroidectomized rats and highest in rats treated with triiodothyronine. 5-Androsten-3 beta,17 beta-diol and 5-androsten-3 beta-ol-7,17-dione were as effective as DHEA in enhancing the liver mitochondrial glycerophosphate dehydrogenase and malic enzyme. Administering compounds that induce the formation of cytochrome P450 enzymes enhanced liver malic enzyme activity but not that of mitochondrial glycerophosphate dehydrogenase. Arochlor 1254 and 3-methylcholanthrene also increased the response of malic enzyme to DHEA feeding.  相似文献   

20.
Malic enzyme (ME; NADP+-dependent; EC 1.1.40) provides NADPH for lipid biosynthesis in oleaginous microorganisms. Its role in vivo depends on there being an adequate supply of NADH to drive malate dehydrogenase to convert oxaloacetate to malate as a component of a cycle of three reactions: pyruvate → oxaloacetate → malate and, by the action of ME, back to pyruvate. However, the availability of cytosolic NADH is limited and, consequently, ancillary means of producing NADPH are necessary. Stoichiometries are given for the conversion of glucose to triacylglycerols involving ME with and without the reactions of the pentose phosphate pathway (PPP) as an additional source of NADPH. Some oleaginous microorganisms (such as Yarrowia lipolytica), however, lack a cytosolic ME and, if the PPP is the sole provider of NADPH, the theoretical yield of triacylglycerol from glucose falls to 27.6 % (w/w) from 31.6 % when ME is present. An alternative route for NADPH generation via a cytosolic isocitrate dehydrogenase (NADP+-dependent) is then discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号