首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Neonatal rhesus macaque 95-3 was inoculated with nonpassaged simian-human immunodeficiency virus strain SHIV-vpu(+), which encodes env of the laboratory-adapted human immunodeficiency virus (HIV) strain IIIB and is considered nonpathogenic. CD4(+) T-cell counts dropped to <200 cells/microl within 4.6 years, and monkey 95-3 died with opportunistic infections 5.9 years postinoculation. Transfer of blood from 95-3 to two naive adult macaques resulted in high peak viral loads and rapid, persistent T-cell depletion. Progeny virus evolved in 95-3 despite high SHIV-vpu(+) neutralizing antibody titers and still used CXCR4 but, in contrast to parental SHIV-vpu(+), productively infected macrophages and resisted neutralization. Sequence analysis revealed three new potential glycosylation sites in gp120; another two were lost. Strikingly similar mutations were detected in a laboratory worker who progressed to AIDS after accidental HIV-IIIB infection (T. Beaumont et al., J. Virol. 75:2246-2252, 2001), thus supporting the SHIV-vpu(+)/rhesus macaque system as a relevant model. Similar mutations were also described after rapid passage of chimeric viruses encoding IIIB env in rhesus and pig-tailed macaques (M. Cayabyab et al., J. Virol. 73:976-984, 1999; Z. Q. Liu et al., Virology 260:295-307, 1999; S. V. Narayan et al., Virology 256:54-63, 1999; R. Raghavan et al., Brain Pathol. 7:851-861, 1997; E. B. Stephens et al., Virology 231:313-321, 1997). Thus, HIV-IIIB env evolved similarly in three different species; this selection occurred in chronically infected individuals during disease progression as well as after rapid virus passage. We postulate that evolutionary pressure led to the outgrowth of more aggressive viral variants in all three species.  相似文献   

9.
10.
11.
The P3HR-1 subclone of Jijoye differs from Jijoye and from other Epstein-Barr virus (EBV)-infected cell lines in that the virus produced by P3HR-1 cultures lacks the ability to growth-transform normal B lymphocytes (Heston et al., Nature (London) 295:160-163, 1982; Miller et al., J. Virol. 18:1071-1080, 1976; Miller et al., Proc. Natl. Acad. Sci. U.S.A. 71:4006-4010, 1974; Ragona et al., Virology 101:553-557, 1980). The P3HR-1 virus was known to be deleted for a region which encodes RNA in latently infected, growth-transformed cells (Bornkamm et al., J. Virol. 35:603-618, 1980; Heller et al., J. Virol. 38:632-648, 1981; King et al., J. Virol. 36:506-518, 1980; Raab-Traub et al., J. Virol. 27:388-398, 1978; van Santen et al., Proc. Natl. Acad. Sci. U.S.A. 78:1930-1934, 1980). This deletion is now more precisely defined. The P3HR-1 genome contains less than 170 base pairs (and possibly none) of the 3,300-base pair U2 region of EBV DNA and is also lacking IR2 (a 123-base pair repeat which is the right boundary of U2). A surprising finding is that EBV isolates vary in part of the U2 region. Two transforming EB viruses, AG876 and Jijoye, are deleted for part of the U2 region including most or all of a fragment, HinfI-c, which encodes part of one of the three more abundant cytoplasmic polyadenylated RNAs of growth-transformed cells (King et al., J. Virol. 36:506-518, 1980; King et al., J. Virol. 38:649-660, 1981; van Santen et al., Proc. Natl. Acad. Sci. U.S.A. 78:1930-1934).  相似文献   

12.
The 21.7-kb replicase locus of mouse hepatitis virus strain A59 (MHV-A59) encodes several putative functional domains, including three proteinase domains. Encoded closest to the 5' terminus of this locus is the first papain-like proteinase (PLP-1) (S. C. Baker et al., J. Virol. 67:6056-6063, 1993; H.-J. Lee et al., Virology 180:567-582, 1991). This cysteine proteinase is responsible for the in vitro cleavage of p28, a polypeptide that is also present in MHV-A59-infected cells. Cleavage at a second site was recently reported for this proteinase (P. J. Bonilla et al., Virology 209:489-497, 1995). This new cleavage site maps to the same region as the predicted site of the C terminus of p65, a viral polypeptide detected in infected cells. In this study, microsequencing analysis of the radiolabeled downstream cleavage product and deletion mutagenesis analysis were used to identify the scissile bond of the second cleavage site to between Ala832 and Gly833. The effects of mutations between the P5 and P2' positions on the processing at the second cleavage site were analyzed. Most substitutions at the P4, P3, P2, and P2' positions were permissive for cleavage. With the exceptions of a conservative P1 mutation, Ala832Gly, and a conservative P5 mutation, Arg828Lys, substitutions at the P5, P1, and P1' positions severely diminished second-site proteolysis. Mutants in which the p28 cleavage site (Gly247 / Val248) was replaced by the Ala832 / Gly833 cleavage site and vice versa were found to retain processing activity. Contrary to previous reports, we determined that the PLP-1 has the ability to process in trans at either the p28 site or both cleavage sites, depending on the choice of substrate. The results from this study suggest a greater role by the PLP-1 in the processing of the replicase locus in vivo.  相似文献   

13.
14.
To date, the production of T-even bacteriophage with giant heads has been achieved in two ways: (i) by use of canavanine-arginine treatment of Escherichia coli B cultures infected by wild-type bacteriophage (Cummings and Bolin, Bacteriol. Rev. 40:314-359, 1976; Cummings et al., Virology 54:245-261, 1973), which give a size distribution of giants that is phage specific (Cummings et al., Virology 54:245-261, 1973); and (ii) by infection with certain missense mutants of T4D gene 23 (Doermann et al., J. Virol. 12:374-385, 1973; ICN-UCLA Symposium on Molecular Biology, p. 243-285, 1973) or temperature-sensitive mutants of gene 24 (Aebi et al., J. Supramol. Struct. 2:253-275, 1974; Biljenga et al., J. Mol. Biol. 103:469-498, 1976). We now report the effect of mixed infection with several mutants of T4D on both the production and the size of giant bacteriophage. We found that gene 24 mutant is a critical partner for the production of giants. Infection using T4.24 mutants together with either T4.23 mutants, T4B+ or T6+ led to the formation of giants with heads 10- to 14-fold longer than normal-length heads. Infection with amber 24-bypass 24 double mutants of T4D led to the production of giants when gene 23 mutant was used to co-infect. Addition of canavanine to the co-infected cultures could alter the size distribution of giants, depending on which phage were used to coinfect. Gene 22 mutants had a modifying effect on these results. In the absence of canavanine co-infection with gene 22 mutants prevented the production of giants, and in the presence of canavanine giants of 1.5 to 5 head lengths were found. We have interpreted these results to mean that critical concentrations of gene products 22, 23, and 24 interact to control head length in T-even bacteriophage.  相似文献   

15.
16.
Complementary strands of adeno-associated virus DNA labeled with 32P at the 5' ends were separated and then self-annealed to form single-stranded circles stabilized by hydrogen bonds between the complementary sequences in the inverted terminal repetitions. We have previously shown that there are two distinct sequences in the terminal repetition which represent an inversion of the first 125 nucleotides (E. Lusby et al., J. Virol. 34:402-409, 1980; I. S. Spear et al., Virology 24:627-634, 1977). Base pairing between terminal sequences of the same orientation leads to a normal double helical structure. If sequences of the opposite orientation pair, an aberrant secondary structure is formed. HpaII digestion of the self-annealed, single-stranded circles led to labeled terminal fragments that corresponded both to those generated from termini of a normal double helical structure and those generated from an aberrant terminal secondary structure. Thus, the orientation of the terminal repetition at one end of the genome is not influenced by the orientation at the other end.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号