首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous work demonstrated that Schwann cells (SCs) must interact with nerve cells (NCs) in order to generate their basal lamina (BL) in culture (M. B. Bunge, A. K. Williams, and P. M. Wood, 1982, Dev. Biol. 92, 449-460). The present study was undertaken to determine if this interaction requires proximity of NCs to SCs. Coverslips carrying isolated SCs were placed into culture dishes containing normally contacting SCs + NCs, NCs alone, or SCs alone and were maintained in these dishes for 3-4 weeks in medium known to foster the differentiation of axon-related SCs (BL formation, myelination). The SCs on the coverslip were not allowed to contact the cells in the culture dish. In other experiments, SCs isolated on coverslips were simply cultured in medium conditioned by contacting SCs + NCs, NCs alone, or SCs alone. The accumulation of BL components was monitored by light microscopic immunocytochemistry and the assembly of BL structure assessed by electron microscopy. When SCs were cocultured with but not contacted by neurons, immunostaining for BL constituents revealed a patchy deposition of material in sharp contrast to the linear deposition observed on axon-related SCs. Electron microscopy of these isolated SCs revealed short segments of BL, strands or clumps of BL-like material extending away from the cell surface, and accumulation of this material between cells. A greater number of isolated SCs were immunostained when grown with contacting SCs + NCs than with NCs or SCs. The conditioned medium experiments yielded similar results; only patchy BL was observed and more immunostaining was detected on isolated SCs when the medium had been conditioned by contacting SCs + NCs than by NCs alone or SCs alone. Immunostaining was less overall in the conditioned medium experiments than in the cell coculture work. In addition, standard SC + NC cultures grown in differentiation-supporting medium were studied by electron microscopy. SCs that were not contacted by axons but were positioned between fascicles of normally contacting SCs + NCs were identified under phase microscopy and then examined for the presence of BL. These SCs exhibited only occasional segments of BL or detached BL-like material. Lastly, within differentiated fascicles, nonensheathing SCs were compared with neighboring myelinating SCs that were in substantial contact with axons. BL-deficient nonensheathing SCs were found directly adjacent to axons and BL-coated myelinating SCs.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Primary cultures that contain only Schwann cells and sensory nerve cells synthesize basal lamina. The assembly of this basal lamina appears to be essential for normal Schwann cell development. In this study, we demonstrate that Schwann cells synthesize two major heparan sulfate-containing proteoglycans. Both proteoglycans band in dissociative CsCl gradients at densities less than 1.4 g/ml, and therefore, presumably, have relatively low carbohydrate-to-protein ratios. The larger of these proteoglycans elutes from Sepharose CL-4B in 4 M guanidine hydrochloride (GuHCl) at a Kav of 0.21 and contains heparan sulfate and chondroitin sulfate chains of Mr 21,000 in a ratio of approximately 3:1. This proteoglycan is extracted from cultures by 4 M GuHCl but not Triton X-100 and accumulates only when Schwann cells are actively synthesizing basal lamina. The smaller proteoglycan elutes from Sepharose CL-4B at a Kav of 0.44 and contains heparan sulfate and chondroitin sulfate chains of Mr 18,000 in a ratio of approximately 4:1. This proteoglycan is extracted by 4 M GuHCl or by Triton X-100. The accumulation of this proteoglycan is independent of basal lamina production.  相似文献   

3.
Schwann cells that are deprived of axonal contact switch their glycolipid metabolic pathway from primarily galactocerebroside (GalCe) synthesis to the formation of glucocerebroside (GlcCe) and its homologs. The removal of axonal influence has a dual effect on Schwann cell phenotype; they lose the ability to assemble both myelin and basement membrane. To determine whether a loss of basement membrane directly affects glycolipid expression, we have examined lipid biosynthesis in Schwann cells which were allowed to interact with axons of dorsal root ganglion neurons but which were deprived of the ability to assemble basal lamina. These Schwann cells resemble those from myelinating nerve in that they synthesize a large amount of galactohydroxycerebroside. This suggests that axon contact, even in the absence of basement membrane, is sufficient to induce the GalCe metabolic pathway.Abbreviations DRG dorsal root ganglia - GalCe galactocerebroside - GalCe-OH galactohydroxycerebroside - GlcCe glucocerebroside - GL-2 lactosylceramide - GL-3 trihexosylceramide - GL-4 tetrahexosylceramide - HPTLC high-performance thin-layer chromatography - MGDG monogalactosyl diacylglycerol - NL non-polar lipids - PC phosphatidylcholine - Su sulfatide - Su-OH hydroxysulfatide  相似文献   

4.
Ontogeny of the basal lamina in the sea urchin embryo   总被引:20,自引:0,他引:20  
The patterns of expression for several extracellular matrix components during development of the sea urchin embryo are described. An immunofluorescence assay was employed on paraffin-sectioned material using (i) polyclonal antibodies against known vertebrate extracellular matrix components: laminin, fibronectin, heparan sulfate proteoglycan, collagen types I, III, and IV; and (ii) monoclonal antibodies generated against sea urchin embryonic components. Most extracellular matrix components studied were found localized within the unfertilized egg in granules (0.5-2.0 micron) distinct from the cortical granules. Fertilization initiated trafficking of the extracellular matrix (ECM) components from within the egg granules to the basal lamina of the developing embryo. The various ECM components arrived within the developing basal lamina at different times, and not all components were unique to the basal lamina. Two ECM components were not found within the egg. These molecules appeared de novo at the mesenchyme blastula stage, and remained specific to the mesoderm through development. The reactivity of antibodies to vertebrate ECM antigens with components of the sea urchin embryo suggests the presence of immunologically similar ECM molecules between the phyla.  相似文献   

5.
The purification, biochemical characterization and functional features of a novel extracellular matrix protein are described. This protein is a component of the basal lamina found in embryos from the sea urchin species Paracentrotus lividus and Hemicentrotus pulcherrimus . The protein has been named PI-200 K or Hp-200 K, respectively, because of the species from which it was isolated and its apparent molecular weight in SDS-PAGE under reducing conditions. It has been purified from unfertilized eggs where it is found packed within cytoplasmic granules, and has different binding affinities to type I collagen and heparin, as assessed by affinity chromatography columns. By indirect immunofluorescence experiments it was shown that, upon fertilization, the protein becomes extracellular, polarized at the basal surface of ectoderm cells, and on the surface of primary mesenchyme cells at the blastula and gastrula stages. The protein serves as an adhesive substrate, as shown by an in vitro binding assay where cells dissociated from blastula embryos were settled on 200K protein-coated substrates. To examine the involvement of the protein in morphogenesis of sea urchin embryo, early blastula embryos were microinjected with anti-200K Fab fragments and further development was followed. When control embryos reached the pluteus stage, microinjected embryos showed severe abnormalities in arms and skeleton elongation and patterning. On the basis of current results, it was proposed that 200K protein is involved in the regulation of sea urchin embryo skeletogenesis.  相似文献   

6.
The optic vesicle develops as an evagination of the cephalic neural folds. We have examined the early development of the optic vesicle in Swiss Webster mice using correlated transmission electron microscopy (TEM), scanning electron microscopy (SEM), light microscopic (LM) measurements of cell shape changes, immunohistochemical localization of basal lamina (BL) components (type IV collagen, laminin and heparan sulphate proteoglycan (HSPG)) and ultrastructural analysis of the BL. Like the neuroepithelium in other regions, the low columnar cells of the neural plate in the future optic vesicle region become high columnar, then wedge shaped following constriction of the cell apices to form the C-shaped vesicle. In this region, the cells elongate 2 times their initial height before the neural tube closes, then shorten 20% as the vesicle is completed. Cell apices decrease in width by about one half during vesicle formation. Deposition of BL components was initially even, with type IV collagen and laminin reduced in deposition in regions of outpouching. At later stages the linear, even distribution of all four components was re-established. Ultrastructural analysis confirmed the BL discontinuity and re-establishment and correlated the observed cell shaping alterations with apparent increases in the number of microtubules (during elongation) and microfilaments (during apical constriction). The number of apical intercellular junctions also appeared to increase in number during optic vesicle formation, possibly providing stability and coordination to the evagination process.  相似文献   

7.
8.
9.
Targeted deletion of focal adhesion kinase (fak) in the developing dorsal forebrain resulted in local disruptions of the cortical basement membrane located between the neuroepithelium and pia-meninges. At disruption sites, clusters of neurons invaded the marginal zone. Retraction of radial glial endfeet, midline fusion of brain hemispheres, and gliosis also occurred, similar to type II cobblestone lissencephaly as seen in congenital muscular dystrophy. Interestingly, targeted deletion of fak in neurons alone did not result in cortical ectopias, indicating that fak deletion from glia is required for neuronal mislocalization. Unexpectedly, fak deletion specifically from meningeal fibroblasts elicited similar cortical ectopias in vivo and altered laminin organization in vitro. These observations provide compelling evidence that FAK plays a key signaling role in cortical basement membrane assembly and/or remodeling. In addition, FAK is required within neurons during development because neuron-specific fak deletion alters dendritic morphology in the absence of lamination defects.  相似文献   

10.
Summary Chick embryos at developmental stages up to primitive streak formation were fixed in a mixture of tannic acid and glutaraldehyde. A basal lamina was present in the unincubated embryo and consisted of a lucent lamina interna and a lamina densa. At the primitive streak stage the lamina densa showed a periodicity of stained elements. Densely stained materials were present on the cell surfaces lining the cavity between the epiblast and endoblast, and on the mesoderm cells within this cavity. Considerable amounts of extracellular material were observed in the cavity. Hyaluronidase treatment removed the cell surface and extracellular material, indicating that hyaluronic acid is a major component. This enzyme disrupted the basal lamina, leaving a fibrillar remnant with no periodic structure. It is therefore suggested that the dense periodicities consist of glycosaminoglycan built on an enzyme-resistant framework which is probably collagen. Enzyme-resistant fibrils, presumably collagen precursors, are present elsewhere within the tissue spaces.  相似文献   

11.
Trypsin-isolated dental epithelia, cultured on top of plasma or agar coagulum synthesized a new lamina densa-like structure. If enamel organs were cultured on Millipore filters or immersed in liquid medium at the bottom of plastic dishes, no basal lamina was deposited.  相似文献   

12.
The spreading behaviour of dissociated hypoblast cells on and besides a band of aligned fibrils associated with the basal lamina of the epiblast was investigated by the use of scanning electron microscopy. A horse-shaped band of aligned fibrils, first demonstrated by Wakely and England (1979), is present during the gastrulation stages of chicken embryos on the ventral side of the epiblast at the cranial and lateral borders of the area pellucida. The basal lamina of the area pellucida situated inside the fibrillar band enables the spreading and probably the locomotion of dissociated cells, which appeared as polarized cells. Numerous cells were also found on the fibrillar band, and these cells lacked distinct lamellae and a polarized shape. Extensions of the cells contacted the extracellular fibrils and, at these sites of contact, the pattern of the fibrils was frequently deformed. From these observations and from previous results emerged the concept that spreading and locomotion of dissociated hypoblast cells, as well as single mesoblast cells and healing hypoblast epithelium, are inhibited by the band of extracellular fibrils, which acts as a physical barrier. The cell biological basis of the mechanism by which extracellular fibrils associated with the basal lamina arrest the migration of hypoblast and mesoblast cells, but guide the migration of primordial germ cells, is discussed.  相似文献   

13.
Rat Schwann cells cultured with dorsal root ganglion neurons in a serum-free defined medium fail to ensheathe or myelinate axons or assemble basal laminae. Replacement of defined medium with medium that contains human placental serum (HPS) and chick embryo extract (EE) results in both basal lamina and myelin formation. In the present study, the individual effects of HPS and EE on basal lamina assembly and on myelin formation by Schwann cells cultured with neurons have been examined. Some batches of HPS were unable to promote myelin formation in the absence of EE, as assessed by quantitative evaluation of cultures stained with Sudan black; such HPS also failed to promote basal lamina assembly, as assessed by immunofluorescence using antibodies against laminin, type IV collagen, and heparan sulfate proteoglycan. The addition of EE or L-ascorbic acid with such HPS led to the formation of large quantities of myelin and to the assembly of basal laminae. Pretreatment of EE with ascorbic acid oxidase abolished the EE activity, whereas trypsin did not. Other batches of HPS were found to promote both basal lamina and myelin formation in the absence of either EE or ascorbic acid. Ascorbic acid oxidase treatment or dialysis of these batches of HPS abolished their ability to promote Schwann cell differentiation, whereas the subsequent addition of ascorbic acid restored that ability. Ascorbic acid in the absence of serum was relatively ineffective in promoting either basal lamina or myelin formation. Fetal bovine serum was as effective as HPS in allowing ascorbic acid (and several analogs but not other reducing agents) to manifest its ability to promote Schwann cell differentiation. We suggest that ascorbic acid promotes Schwann cell myelin formation by enabling the Schwann cell to assemble a basal lamina, which is required for complete differentiation.  相似文献   

14.
15.
Schwann cells form myelin in the peripheral nervous system. All Schwann cells are surrounded by a basal lamina. Extracellular matrix molecules in the basal lamina, such as laminin, regulate key aspects of Schwann cell development including the formation, architecture and function of myelin. Recent genetic and cell biological experiments suggest that Schwann cells regulate the basal lamina and its receptors in both time and space, resulting in differential functions. These findings have important implications for diseases resulting from laminin dysfunction, such as congenital muscular dystrophy 1A.  相似文献   

16.
In order to determine the role of the extracellular matrix in regulating the directed growth of embryonic neurites, antisera to retina (a-RBL I and II), to pigment epithelium (a-PBL) and to glomerular (a-GBL) basal lamina were probed for an effect on the ordered extension of neurites. In the assays, retina explants from chick and quail were cultured on basal lamina from embryonic chick retina and pigment epithelium either in the presence of anti-basal lamina antisera or in the presence of the corresponding preimmune sera. In the presence of all anti-basal lamina antisera, normal extension of axons was greatly inhibited both on retina and on pigment epithelium basal lamina. The antisera affected the growth pattern and the morphology of the individual axons in two ways: in the presence of a-RBL I the short axons were less directed, developed more and longer side branches, and the lamellipodia of the growth cones were reduced in size compared to axons from control cultures. In the presence of a-RBL II and a-GBL, axons grew slowly out from the explants as very thick bundles, strikingly different from axons in control cultures. The antiserum to pigment epithelium basal lamina induced both strong fasciculation and disorganization of the linear fiber extension, being intermediate between the two types of effects observed after antiserum addition. The results suggest that adhesive matrix molecules in basal laminae have important functions in elongation, fasciculation and in the morphology of growing axons.  相似文献   

17.
Details of mouth formation in normal and exogastrulated Pisaster ochraceus larvae have been studied by light microscopy and transmission and scanning electron microscopy. As the archenteron begins to bend, the cells in the presumptive mouth region dissociate and migrate into the blastocoele where they become mesenchyme cells. This leaves a defect in the “blind” endodermal tube, which is covered by a basal lamina. Subsequently this exposed basal lamina bulges to form a blister which appears to extend across the blastocoele to make contact with spikelike projections from the future stomodeal region of the ectoderm. Mesenchyme cell processes are associated with both the basal lamina blister and the ectoderm in this region and may provide both motive power and guidance for contact. Shortly after contact is made the blister of basal lamina from the endoderm fuses with the basal lamina of the ectodermal cells and the ectoderm begins to invaginate. At this time the lateral walls of the presumptive oesophagus are largely formed of naked basal lamina with some loosely associated cells on the endodermal side. Eventually the lateral walls of the proximal part of the oesophagus become cellular, giving rise to an epithelium. A cell plug located between the stomodeum and oesophagus persists for some time before finally breaking down to complete the larval digestive tract. Experiments with exogastrulae suggest that many of these developmental patterns are determined before gastrulation.  相似文献   

18.
When meiotic maturation of primary oocytes of the starfish Asterias forbesi is induced by 1-methyladenine, rapid and striking changes in the pattern of protein synthesis detectable by electrophoresis occur after germinal vesicle breakdown. These include a decline in relative labeling with [35S]methionine of several polypeptides synthesized in the oocyte, and increased labeling and new appearance of several polypeptides. Fertilization does not result in other detectable changes. The population of total mRNA translatable in a rabbit reticulocyte lysate cell-free system does not change, but the distribution of mRNAs between polysomes and the postribosomal supernatant reflects the changes observed in vivo. Thus these changes are regulated at the translational level. A review of the literature indicates that translationally mediated changes in patterns of protein synthesis during maturation of oocytes may be a widespread phenomenon.  相似文献   

19.
In dystrophic mice, a model of merosin-deficient congenital muscular dystrophy, laminin-2 mutations produce peripheral nerve dysmyelination and render Schwann cells unable to sort bundles of axons. The laminin receptor and the mechanism through which dysmyelination and impaired sorting occur are unknown. We describe mice in which Schwann cell-specific disruption of beta1 integrin, a component of laminin receptors, causes a severe neuropathy with impaired radial sorting of axons. beta 1-null Schwann cells populate nerves, proliferate, and survive normally, but do not extend or maintain normal processes around axons. Interestingly, some Schwann cells surpass this problem to form normal myelin, possibly due to the presence of other laminin receptors such as dystroglycan and alpha 6 beta 4 integrin. These data suggest that beta 1 integrin links laminin in the basal lamina to the cytoskeleton in order for Schwann cells to ensheath axons, and alteration of this linkage contributes to the peripheral neuropathy of congenital muscular dystrophy.  相似文献   

20.
The teratogenic effects of the dioxin 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) have previously been studied in several species, and hydronephrosis has been reported to be a frequent abnormality in near-term fetuses. C57BL/6N female mice, given 12 micrograms/kg TCDD, P.O., on day 10 of gestation were killed on days 14, 15, and 16; fetal kidneys were collected and prepared for either immunofluorescent localization of several extracellular matrix components (ECM) or transmission electron microscopy (TEM). The TCDD-treated and control kidneys showed the same pattern of staining for fibronectin, but TCDD-treated kidneys displayed a diminished overall intensity. The intensity of laminin and type IV collagen immunofluorescence also appeared to be decreased, and deviations in the pattern of antibody binding were detected for differentiating TCDD-treated nephrons. Binding of the laminin antibody to the basal lamina was decreased in the parietal layer of Bowman's capsules in more advanced stages of differentiation. TEM analysis focused on the basal lamina of the tubules and Bowman's capsule. In TCDD-exposed kidneys, ECM components adjacent to differentiating nephrons were less abundant, and the basal lamina of the developing Bowman's capsules had a diminished lamina densa. The earliest nephrons to develop display these defects and comprise the first functional filtration units of the metanephric kidney. These ultrastructural changes noted in TCDD-exposed nephrons may promote proteinuria, a condition normally observed in the developing kidney when the filtration barrier is immature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号