首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two loci in the human genome, chromosomes 4q12-q21 and 17q11.2, contain clusters of CXC and CC chemokine subfamily genes, respectively. Since mice appear to contain fewer chemokine genes than humans, numerous gene duplications might have occurred in each locus of the human genome. Here we describe the genomic organization of the human pulmonary and activation-regulated CC chemokine (PARC), also known as DC-CK1 and AMAC-1. Despite high sequence similarity to a CC chemokine macrophage inflammatory protein-1alpha (MIP-1alpha)/LD78alpha, PARC is chemotactic for lymphocytes and not for monocytes and does not share its receptor with MIP-1alpha. Analyses of the BAC clones containing the human PARC gene indicated that the gene is located most closely to MIP-1alpha (HGMW-approved symbol SCYA3) and MIP-1beta (HGMW-approved symbol SCYA4) on chromosome 17q11.2. Dot-plot comparison suggested that the PARC gene had been generated by fusion of two MIP-1alpha-like genes with deletion and selective usage of exons. Base changes accumulated before and after the fusion might have adapted the gene to a new function. Since there are variably duplicated copies of the MIP-1alpha gene called LD78beta (HGMW-approved symbol SCYA3L) in the vicinity of the MIP-1alpha gene, the locus surrounding the MIP-1alpha gene seems to be a "hot spring" that continuously produces new family genes. This evidence provides a new model, duplication and fusion, of the molecular basis for diversity within a gene family.  相似文献   

2.
Monocyte chemotactic protein-1 (MCP-1) is a member of the small inducible gene (SIG) family. It has been shown to play a role in the recruitment of monocytes to sites of injury and infection. By analysis of a panel of somatic cell hybrids, we have localized the MCP-1 gene, designated SCYA2, to human chromosome 17. In situ hybridization confirmed this assignment and further localized the gene to 17q11.2-q21.1.  相似文献   

3.
Two members of the zinc finger Krüppel family, ZNF24 (KOX17) and ZNF29 (KOX26), have been localized by somatic cell hybrid analysis and in situ chromosomal hybridization to human chromosomes 18q12 and 17p13-p12, respectively. The mapping of ZNF29 together with the previously reported localization of ZFP3 suggests that a zinc finger gene complex is located on human chromosome 17p. ZNF29 maps centromeric to the human p53 tumor antigen gene (TP53). In the analogous murine position, the two mouse zinc finger genes Zfp2 and Zfp3 have recently been assigned to the distal region of mouse chromosome 11, the murine homolog of human chromosome 17. Both human zinc finger genes ZNF24 and ZNF29 are in chromosomal regions that have been noted to be deleted in neoplasms of the lung and of the central nervous system at chromosome 17p and in colorectal neoplasia at chromosomes 17p and 18q.  相似文献   

4.
Two loci in the human genome, chromosomes 4q12–q21 and 17q11.2, contain clusters of CXC and CC chemokine subfamily genes, respectively. Since mice appear to contain fewer chemokine genes than humans, numerous gene duplications might have occurred in each locus of the human genome. Here we describe the genomic organization of the human pulmonary and activation-regulated CC chemokine (PARC), also known as DC-CK1 and AMAC-1. Despite high sequence similarity to a CC chemokine macrophage inflammatory protein-1α (MIP-1α)/LD78α, PARC is chemotactic for lymphocytes and not for monocytes and does not share its receptor with MIP-1α. Analyses of the BAC clones containing the humanPARCgene indicated that the gene is located most closely toMIP-1α(HGMW-approved symbolSCYA3) andMIP-1β(HGMW-approved symbolSCYA4) on chromosome 17q11.2. Dot-plot comparison suggested that thePARCgene had been generated by fusion of twoMIP-1α-like genes with deletion and selective usage of exons. Base changes accumulated before and after the fusion might have adapted the gene to a new function. Since there are variably duplicated copies of theMIP-1αgene calledLD78β(HGMW-approved symbolSCYA3L) in the vicinity of theMIP-1αgene, the locus surrounding theMIP-1αgene seems to be a “hot spring” that continuously produces new family genes. This evidence provides a new model, duplication and fusion, of the molecular basis for diversity within a gene family.  相似文献   

5.
Han W  Ding P  Xu M  Wang L  Rui M  Shi S  Liu Y  Zheng Y  Chen Y  Yang T  Ma D 《Genomics》2003,81(6):609-617
TM4SF11 is only 102 kb from the chemokine gene cluster composed of SCYA22, SCYD1, and SCYA17 on chromosome 16q13. CKLF maps on chromosome 16q22. CKLFs have some characteristics associated with the CCL22/MDC, CX3CL1/fractalkine, CCL17/TARC, and TM4SF proteins. Bioinformatics based on CKLF2 cDNA and protein sequences in combination with experimental validation identified eight novel genes designated chemokine-like factor superfamily members 1-8 (CKLFSF1-8). CKLFSF1-8 form gene clusters; the sequence identities between CKLF2 and CKLFSF1-8 are from 12.5 to 39.7%. Most of the CKLFSFs have alternative RNA splicing forms. CKLFSF1 has a CC motif and higher sequence similarity with chemokines than with any of the other CKLFSFs. CKLFSF8 shares 39.3% amino acid identity with TM4SF11. CKLFSF1 links the CKLFSF family with chemokines, and CKLFSF8 links it with TM4SF. The characteristics of CKLFSF2-7 are intermediate between CKLFSF1 and CKLFSF8. This indicates that CKLFSF represents a novel gene family between the SCY and the TM4SF gene families.  相似文献   

6.
The S1 serine protease family is one of the largest gene families known. Within this family there are several subfamilies that have been grouped together as a result of sequence comparisons and substrate identification. The grouping of related genes allows for the speculation of function for newly found members by comparison and for novel subfamilies by contrast. Analysis of the evolutionary patterns of genes indicates whether or not orthologs are likely to be identified in other species as well as potentially indicating that hypothesized orthologs are in fact not. Looking at subtle differences between subfamily members can reveal intricacies about function and expression. Previously, we have described genes encoding two novel serine proteinases, ISP1 and ISP2, which are most closely related to tryptases. The ISP1 gene encodes the embryo-derived enzyme strypsin, which is necessary for blastocyst hatching and invasion in vitro. Additionally both ISP1 and ISP2 are co-expressed in the endometrial gland during the time of hatching, suggesting that they may also both participate in zona lysis from within the uterine lumen. Here, we demonstrate that the ISPs are tandemly linked within the tryptase cluster on 17A3.3. We suggest that remarkable similarities within the 5'-untranslated and first intron regions of ISP1 and ISP2 may explain their intimate co-regulation in uterus. We also suggest that ISP genes have evolved through gene duplication and that the ISP1 gene has also begun to adopt an additional new function in the murine preimplantation embryo.  相似文献   

7.
Eotaxin is a CC chemokine that is a specific chemoattractant for eosinophils and is implicated in the pathogenesis of eosinophilic inflammatory diseases, such as asthma. We describe the genomic organization, complete sequence, including 1354 bp 5′ of the RNA initiation site, and chromosomal localization of the human eotaxin gene. Fluorescencein situhybridization analysis localized eotaxin to human chromosome 17, in the region q21.1–q21.2, and the human gene name SCYA11 was assigned. We also present the 5′ flanking sequence of the mouse eotaxin gene and have identified several regulatory elements that are conserved between the murine and the human promoters. In particular, the presence of elements such as NF-κB, interferon-γ response element, and glucocorticoid response element may explain the observed regulation of the eotaxin gene by cytokines and glucocorticoids.  相似文献   

8.
9.
The gene for autosomal, dominantly inherited, non-chromaffin paragangliomas has previously been mapped at 11q23-qter by linkage analysis of a single family. In the present study, we have used genetic markers from 11q for the analysis of two distantly related pedigrees with the same disorder. Linkage analysis and haplotyping indicate that the gene underlying the disorder in the present family is located on chromosome 11q proximal to the tyrosinase gene locus (11q14–q21). Closely linked markers are the human homologue of the murine INT2 protooncogene and the anonymous DNA marker D11S527. A maximum lod score of 5.4 (=0.0) has been obtained for linkage between the disorder and the chromosomal region defined by these markers. The human INT2 gene can be regarded as a candidate for the disorder on the basis of its expression pattern during embryogenesis in the mouse. However, haplotype analysis indicates that this gene is probably not the predisposing genetic factor in the present family.  相似文献   

10.
Molecular evolution of a multigene family in group A streptococci   总被引:15,自引:0,他引:15  
The emm genes are members of a gene family in group A streptococci (GAS) that encode for antiphagocytic cell-surface proteins and/or immunoglobulin-binding proteins. Previously sequenced genes in this family have been named "emm," "fcrA," "enn," "arp," "protH," and "mrp"; herein they will be referred to as the "emm gene family." The genes in the emm family are located in a cluster occupying 3-6 kb between the genes mry and scpA on the chromosome of Streptococcus pyogenes. Most GAS strains contain one to three tandemly arranged copies of emm-family genes in the cluster, but the alleles within the cluster vary among different strains. Phylogenetic analysis of the conserved sequences at the 3' end of these genes differentiates all known members of this family into four evolutionarily distinct emm subfamilies. As a starting point to analyze how the different subfamilies are related evolutionarily, the structure of the emm chromosomal region was mapped in a number of diverse GAS strains by using subfamily-specific primers in the polymerase chain reaction. Nine distinct chromosomal patterns of the genes in the emm gene cluster were found. These nine chromosomal patterns support a model for the evolution of the emm gene family in which gene duplication followed by sequence divergence resulted in the generation of four major-gene subfamilies in this locus.   相似文献   

11.
A phylogenetic analysis ofsrc-related protein tyrosine kinases (PTKs) showed that one group of these genes is quite ancient in the animals, its divergence predating the divergence of the diploblast and triploblast phyla. Three other major groupings of genes were found to predate the divergence of protostome and deuterostome phyla. Most knownsrc-related PTKs of mammals were found to belong to five well-differentiated families: srcA, srcB, abl, csk, and tec. One srcA gene (fyn) has an alternatively spliced seventh exon which shows a different pattern of relationship from the remainder of the gene; this suggests that this exon may have been derived by a recombinational event with another gene, perhaps one related tofgr. The recently published claim that mammalian members of this family expressed in the nervous system evolve more slowly at nonsynonymous nucleotide sites than do those expressed in the immune system was not supported by an analysis of 13 pairs of human and mouse orthologues. Rather, T-cell-specificsrc-related PTKs were found to have higher rates of nonsynonymous substitution than were those having broader expression. This effect was particularly marked in the peptide binding site of the SH2 domain. While the SH2 binding site was highly conserved among paralogous mammalian members of the srcA and srcB subfamilies, no such effect was seen in the comparison of paralogous members of the csk and tec subfamilies. This suggests that, while the peptide binding function of SH2 is conserved within both srcA and srcB subfamilies, paralogous members of the csk and tec subfamilies have diverged functionally with respect to peptide recognition by SH2.  相似文献   

12.
Summary The chromosomal assignments of genes belonging to the EF-hand family which have a common origin are compiled in this article. So far data are available from 27 human gene loci belonging to 6 subfamilies and 8 murine loci belonging to 4 subfamilies. Chromosomal localization has been obtained by somatic-cell hybrid analysis using the Southern blot technique or PCR amplification, metaphase spread in situ hybridization, or isolation of the particular genes from chromosome-specific libraries. Except for genes of the S-100 alpha proteins which are grouped on human chromosome 1q12-25 and mouse chromosome 3, no linkage has been found for genes encoding EF-hand proteins, indicating absence of selective pressure for maintaining chromosomal clustering. Six of these genes map to known syntenic groups conserved in the human and mouse genomes. This suggests that chromosomal translocations occurred before divergence of these species. The possible significance of chromosomal positioning with respect to nearby located known genes and genetic disease loci is discussed.  相似文献   

13.
Yan J  Cai Z 《PloS one》2010,5(12):e14276

Background

The cytochrome P450 (CYP) superfamily is a multifunctional hemethiolate enzyme that is widely distributed from Bacteria to Eukarya. The CYP3 family contains mainly the four subfamilies CYP3A, CYP3B, CYP3C and CYP3D in vertebrates; however, only the Actinopterygii (ray-finned fish) have all four subfamilies and detailed understanding of the evolutionary relationship of Actinopterygii CYP3 family members would be valuable.

Methods and Findings

Phylogenetic relationships were constructed to trace the evolutionary history of the Actinopterygii CYP3 family genes. Selection analysis, relative rate tests and functional divergence analysis were combined to interpret the relationship of the site-specific evolution and functional divergence in the Actinopterygii CYP3 family. The results showed that the four CYP3 subfamilies in Actinopterygii might be formed by gene duplication. The first gene duplication event was responsible for divergence of the CYP3B/C clusters from ancient CYP3 before the origin of the Actinopterygii, which corresponded to the fish-specific whole genome duplication (WGD). Tandem repeat duplication in each of the homologue clusters produced stable CYP3B, CYP3C, CYP3A and CYP3D subfamilies. Acceleration of asymmetric evolutionary rates and purifying selection together were the main force for the production of new subfamilies and functional divergence in the new subset after gene duplication, whereas positive selection was detected only in the retained CYP3A subfamily. Furthermore, nearly half of the functional divergence sites appear to be related to substrate recognition, which suggests that site-specific evolution is closely related with functional divergence in the Actinopterygii CYP3 family.

Conclusions

The split of fish-specific CYP3 subfamilies was related to the fish-specific WGD, and site-specific acceleration of asymmetric evolutionary rates and purifying selection was the main force for the origin of the new subfamilies and functional divergence in the new subset after gene duplication. Site-specific evolution in substrate recognition was related to functional divergence in the Actinopterygii CYP3 family.  相似文献   

14.
The assignment of the gene encoding the alpha 2-macroglobulin receptor (A2MR), which was first described as the low-density lipoprotein receptor-related protein, was confirmed by nonisotopic and isotopic in situ hybridizations on normal human metaphases to the region 12q13-q14. The same human cDNA, which has 95% sequence identity with the mouse A2mr, was hybridized to metaphases containing the Robertsonian translocation Rb(6;15)1Ald. The mouse A2mr gene was assigned to chromosome 15 in the region B2-D1. This locus and other loci on mouse chromosome 15 have been shown to be homologous with loci on human chromosome 12q.  相似文献   

15.
We report here the localization of the gene for a human T-cell-specific molecule, designated RANTES, to human chromosome region 17q11.2-q12 by in situ hybridization and analysis of somatic cell hybrids using a cDNA probe to the gene. We have recently shown that this gene, which encodes a small, secreted, putative lymphokine, is a member of a larger gene family some of whose members reside on chromosome 4 but most of whose members have not to date been mapped. A secondary hybridization peak was noted on the region of human chromosome 5q31-q34, which may represent the location of other members of the gene family. Interestingly, this latter region overlaps with the location of an extended linked cluster of growth factor and receptor genes, some of which may be coregulated with members of the RANTES gene family.  相似文献   

16.
Von Recklinghausen neurofibromatosis (NF1) is one of the most common inherited human disorders. The genetic locus that harbors the mutation(s) responsible for NF1 is near the centromere of chromosome 17, within band q11.2. Translocation breakpoints that have been found in this region in two patients with NF1 provide physical landmarks and suggest an approach to identifying the NF1 gene. As part of our exploration of this region, we have mapped the human homolog of a murine gene (Evi-2) implicated in myeloid tumors to a location between the two translocation breakpoints on chromosome 17. Cosmid-walk clones define a 60-kb region between the two NF1 translocation breakpoints. The probable role of Evi-2 in murine neoplastic disease and the map location of the human homolog suggest a potential role for EVI2 in NF1, but no physical rearrangements of this gene locus are apparent in 87 NF1 patients.  相似文献   

17.
The gene of tissue kallikrein and closely related genes constitute the glandular kallikrein (GK) gene family. The number of members varies between species, ranging from three human to 25 murine. Recently, the gene family was extended with 12 new members, KLK4-KLK15, that were identified adjacent to the classical GK genes on human chromosome 19. In this report, the structure and phylogeny of the mouse GK gene locus are described. A comparison of the human and murine loci shows that the locations of the tissue kallikrein gene and KLK4-KLK15 are conserved. The region between the tissue kallikrein gene and KLK15, devoid of genes in human, is expanded and contains 23 classical GK genes in mouse. Downstream of KLK15, where the genes encoding PSA and hK2 are located in human, mouse carries the pseudogene PsimGK25. Phylogenetic analyses show that classical GK genes emerged after the separation of the primate and rodent lineages, forming a subgroup within the newly extended GK family.  相似文献   

18.
The Rad51 protein has been shown to play a vital role in the DNA repair process. In humans, its interaction with proteins like BRCA1 and BRCA2 has provided an insight into the mechanism of how these molecules function as tumor suppressors. Several members of the Rad51-like family have been recently identified, including RAD51L2. This gene has been found to be amplified in breast tumors suggesting its role in tumor progression. Here, we describe the cloning of the murine homologue of the human RAD51L2/RAD51C gene. Sequence analysis has revealed that the murine Rad51l2 protein is 86% identical and 93% similar to its human homologue. In spite of such high sequence conservation, the murine protein lacks the first nine amino acids present in the human protein. We have cloned and confirmed the sequence of the 5' end of the murine Rad51l2 cDNA using 5' RACE technique as well as by sequencing the genomic region flanking the first exon of the murine Rad51l2 gene. Northern analysis shows that Rad51l2 is expressed in several adult tissues as well as in embryos at various developmental stages. The murine Rad51l2 gene maps to chromosome 11 and is located in the syntenic region of human chromosome 17q22-23, where the human RAD51L2 is present.  相似文献   

19.
Macrophage colony stimulating factor (CSF-1) is a member of a family of glycoproteins that are necessary for the normal proliferation and differentiation of myeloid progenitor cells. The human CSF-1 gene has previously been assigned to chromosome 5 using somatic cell hybrids, and further localized to 5q33 by in situ hybridization with a 3H labelled cDNA probe. However, the murine macrophage colony stimulating factor gene (csfm) has been localized to a region on mouse chromosome 3 which was previously shown to be syntenic with the proximal region of 1p and not 5q. Using a human genomic DNA clone that contains the CSF-1 gene, we have localized CSF-1 to chromosome 1p13-21 by fluorescence in situ hybridization. The reassignment of the CSF-1 gene argues against its involvement in myeloid disorders with deletions of the long arm of chromosome 5.  相似文献   

20.
Chemokines are small, inducible, structurally related proteins that guide cells expressing the right chemokine receptors to sites of immune response. They have been identified and studied extensively in mammals, but little is known about their presence in other vertebrate groups. Here we describe seven new chemokines in bony fish and one in a cartilaginous fish, as well as one chemokine receptor in a jawless vertebrate. All eight chemokines belong to the SCYA (CC) subfamily characterized by four conserved cysteine residues of which the first two are adjacent. The chemokine receptor is of the CXCR4 type. Phylogenetic analysis does not reveal any clear evidence of orthology of fish and human chemokines. Although the divergence of the subfamilies began before the fish-tetrapod split, much of the divergence within the subfamilies took place separately in the two vertebrate groups. The existence of a chemokine receptor in the lamprey indicates that chemokines are apparently also present in the Agnatha.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号