首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary We have examined induced mutagenesis in rev7-1 mutants of Baker's yeast' Saccharomyces cerevisiae, using a variety of contrasting test systems and several different mutagens. UV-induced reversion frequencies of the ochre allele arg4-17, the putative missense allele ilv1-92 and the frameshift allele his4-38 were 10 to 200 fold lower in haploid and diploid rev7-1 mutants compared with wild type strains, but UV-induced reversion frequencies of the frameshift allele leu2-3 and the proline missense allele cyc1-115 were reduced only a few fold. Ilv1-92 reversion frequencies induced by methyl methane sulfonate or by N-methyl-N-nitro-N-nitrosoguanidine were 10 to 20 times lower in rev7-1 mutants, but normal frequencies of these revertants were induced with ethyl methane sulfonate, even though rev7-1 strains are slightly sensitive to this mutagen as well as to the others tested. We conclude that the rev7 mutants, like the rev3 mutants they closely resemble, have a substantial but not total deficiency concerning induced mutagenesis.  相似文献   

2.
Summary We have isolated and characterized a new mutant of Saccharomyces cerevisiae, carrying a single mutant allele that we designate ngm2-1, which is defective with respect to induced mutagenesis. This mutant was isolated by screening mutagenized clones for reduced frequencies of reversion of the his1-7 allele, induced by N-methyl-N-nitro-N-nitrosoguanidine. As judged by the reversion of his1-7 and ilv1-92, ngm2-1 mutant strains are also deficient with respect to mutability induced by methyl methane sulfonate, ethyl methane sulfonate and, at least partially, by UV. UV-induced reversion of the ochre mutation arg4-17 and the frameshift mutation his4-38 was not much affected by ngm2-1, however. Like rev3 and rev7 mutations, ngm2-1 also has little influence on the reversion of the proline missense allele, cyc1-115. Ngm2-1 mutants are only at best very slightly more sensitive to the toxicity of the four mutagens used, and homozygous diploids sporulate normally.  相似文献   

3.
Prakash L 《Genetics》1976,83(2):285-301
The effect of 16 different genes (rad) conferring radiation sensitivity on chemically induced reversion in the yeast Saccharomyces cerevisiae was determined. The site of reversion used was a well-defined chain initiation mutant mapping in the structural gene coding for iso-1-cytochrome c. High doses of EMS and HNO2 resulted in decreased reversion of cyc1–131 in rad6, rad9 and rad15 strains compared to the normal RAD+ strains. In addition, rad52 greatly decreased EMS reversion of cyc1–131 but had not effect on HNO 2-induced reversion; rad18, on the other hand, increased HNO 2-induced reversion but did not alter EMS-induced reversion. When NQO was used as the mutagen, every rad gene tested, except for rad14 , had an effect on reversion; rad6, rad9, rad15, rad17, rad18, rad22, rev1, rev2 and rev3 lowered NQO reversion while rad1, rad2, rad3, rad4, rad10, rad12 and rad16 increased it compared to the RAD+ strain. The effect of rad genes on chemical mutagenesis is discussed in terms of their effect on UV mutagenesis. It is concluded that although the nature of the repair pathways may differ for UV- and chemically-induced mutations in yeast, a functional repair system is required for the induction of mutation by the chemical agents NQO, EMS and HNO2.  相似文献   

4.
Induction and repair of gene conversion in UV-sensitive mutants of yeast   总被引:1,自引:0,他引:1  
Summary Photoreactivation effect on UV-induced allelic recombination has been examined using various combinations of leu 1 alleles in UV-sensitive and wild type diploid yeast, Saccharomyces cerevisiae. The frequencies of UV-induced heteroallelic reversion in UV-sensitive strains, presumably lacking dark-repair, are strikingly enhanced compared to those in wild type at the same doses under dark condition. However, these enhanced frequencies of reversion are diminished by photoreactivation almost to the level of those in wild type. The induced frequencies of homoallelic reversion (mutation) of relevant alleles are apparently lower than those of heteroallelic reversion. Phenotypic analysis for linked gene leu 1 on UV-induced heteroallelic revertants has shown that most of the revertants are of the nonreciprocal type recombination (mitotic gene conversion). These results would indicate that most of the dark-repairable damage leading to mitotic gene conversion after UV-light is due to pyrimidine dimers.On leave of absence from Radiation Center of Osaka Prefecture, Shinke-cho Sakai, Osaka, Japan.  相似文献   

5.
From cultures of V79 Chinese hamster cells, 10 independent clones of 8-azaguanine resistant cells were isolated and subcultured. Cells from all ten clones were resistant to 1 mg/ml levels of 8-azaguanine (8-AzG), contained less than 3% of the wild type levels of the enzyme, hypoxanthine guanine phosphoribosyl transferase (HGPRT), and were unable to grow in HAT medium. The ten clones were classified according to the conditions under which they reverted to the wild type phenotype. Clones in classes I and II reverted spontaneously with frequencies of 40-10(-5) and about 3-10(-5) respectively, and the reversion frequency was independent of the density of cells of all but one of the clones in the culture medium used. Class II clones evinced increased reversion frequencies with ethyl methanesulfonate (EMS) and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), and to a lesser extent with 5-bromo-2'-deoxyuridine (budR), suggesting that these clones contained point mutations in a locus which controls HGPRT activity. The processes of reversion and toxicity appeared to be associated. Class III clones did not revert spontaneously or with BUdR and MNNG, but did revert with EMS. The reversion frequency of class I clones was not increased after treatment with EMS, MNNG or BUdR.  相似文献   

6.
Non-allelic mutants of Saccharomyces cerevisiae with reduced capacity for ultraviolet light (UV)-induced forward mutation from CAN1 to can1 were assigned to seven distinct genetic loci, each with allele designations umr1-1, umr2-1, …, umr7-1 to indicate UV mutation resistance. Each allele complemented rev1-1, rev2-1, and rev3-1. None conferred a great deal of UV sensitivity. When assayed on yeast extract-peptone-dextrose complex growth agar, umr1, umr3, and umr7 (a mating type) were the most UV-sensitive, with a dose-reduction factor of approximately 1.2 at 10% survival. When assayed on synthetic agar lacking arginine, however, umr3 was the most UV-sensitive (dose-reduction factor of 1.5 at 10% survival). UV revertability of his5-2, lys1-1, and ura4-1 was normal in strains carrying the single genes umr4, umr5, umr6 and umr7; umr1 reduced revertibility of his5-2 and ura4-1 but not lys1-1; umr2 reduced only ura4-1 revertibility; umr3 reduced UV reversion of all three test alleles. Five a/α homozygous umr diploids (except umr1 and umr4) failed to sporulate. One of these, umr7, blocked normal secretion of alpha hormone in α segregants and could not conjugate with a strains. The phenotypes of umr mutants are consistent with the existence of branched UV mutation pathways of different specificity, some of which may function in the single RAD6-dependent error-prone pathway for repair of UV damage. Other possible pathways of action are discussed. It is also suggested that regulatory functions interacting with the mating-type locus or its gene products may play some role in UV mutagenesis or error-prone repair.  相似文献   

7.
A diploid yeast strain is described which can be used to study induction of mitotic crossing over, mitotic gene conversion and reverse mutation.Mitotic crossing over can be detected visually as pink and red twin sectored colonies which are due to the formation of homozygous cells of the genotype ade240/ade240 (deep red) and ade-2-119/ade2-119 (pink) from the originally heteroallelic condition ade2-40/ade2-119 which forms white colonies.Mitotic gene conversion is monitored by the appearance of tryptophan non-requiring colonies on selective media. The alleles involved are tryp5-12 and trp5-27 derived from the widely used strain D4.Mutation induction can be followed by the appearance of isoleucine non-requiring colonies on selective media. D7 is homoallelic ilv1-92/ilv1-92. The isoleucine requirement caused by ilv1-92 can be alleviated by true reverse mutation and allele non-specific suppressor mutation.The effects of ethyl methanesulfonate (EMS), nitrous acid, ultraviolet light and hycanthone methanesulfonate were studied with D7 stationary phase cells. Mitotic crossing over as monitored by red/pink twin sectored colonies was almost equally frequent among normal and convertant cells. This showed again that mitotic recombination is not due to the presence fo a few cells committed to meiosis in an otherwise mitotic cell population.The dose-response curves for induction of mitotic gene conversion and reversion of the isoleucine requirement were exponential. In contrast to this, the dose-response curve for induction of twin sectored red and pink colonies reached a plateau at doses giving about 30% cell killing. This could partly be due to lethal segregation in the progeny of treated cells.None of the agents tested would induce only one type of mitotic recombination, gene conversion or crossing over. There was, however, some mutagen specificity in the induction of isoleucine prototrophs.  相似文献   

8.
Summary A UV-revertible mutant of the nar1 structural gene for nitrate reductase was isolated in wildtype (nar + nir +) Ustilago maydis. It proved to be vigorously revertible by gamma rays as well. Genetic analysis revealed that the strain carried a single, nonleaky, recessive allele (nar1-m) with an unusually high spontaneous reversion rate (3×10-5/div.). Reliable reversion frequencies were determined with a special agar medium that reduced the normally high level of residual growth observed on nitrate minimal agar. Radiation-induced reversion frequencies in the homozygous diploid were approximately twice those in the hapliod. Following crosses to wild type, two revertants (one spontaneous and one UV-induced) were found to map at nar1. Although the molecular basis of nar1-m reversion is not known, available data suggest that some form of point mutation is involved.  相似文献   

9.
The range of specificity of the rev2-1 mutation, an allele that reduces the frequency of ochre revertants induced by UV in Saccharomyces cerevisiae (LEMONTT 1971a), has been investigated by examining its influence on the reversion of eleven well-defined and contrasting cyc1 mutations. We have shown, in support of a suggestion of LEMONTT (1971a), that the REV2 gene product is concerned only with the reversion of ochre alleles; it plays virtually no role in the reversion of amber, missense or frameshift mutations. We have also shown that its effect is specific and confined to only some highly revertible ochre alleles. The REV2 gene product appears to enhance reversion at these sites by facilitating the conversion of two otherwise nonmutagenic photo-products into a single premutational lesion. UV-induced killing of rev2-1 strains was found to be significantly greater on fermentable rather than on nonfermentable media.  相似文献   

10.
Summary Selection for defective reversion induction, after UV treatment of E. coli K 12, yielded uvm mutants. These mutants exhibited highly reduced or no UV mutability for all loci tested although they were moderately and normally mutable by X-rays and EMS, respectively. Uvm mutations confer only a slight sensitivity to killing by UV and X-rays and no clear sensitivity to the lethal effect of HN2, EMS or MMS. Growth and viability of untreated uvm cells were normal. The properties of uvm mutants are discussed in relation to those of other relevant mutant types and to some actual problems of induced mutagenesis.  相似文献   

11.
Summary Spontaneous temperature sensitive (ts) mutants of cyanophage LPP-1 were isolated from the wild population of the virus upto a frequency of 1.7x10-3. The reversion frequencies were 1.3x10-4 or even less which appeared to be a clonal property. A detailed investigation of the two mutants showed that they were unable to grow at non-permissive temperature and the temperature sensitive phase lasted for 2–3 h during their intracellular growth as judged by the shift-up and down experiments. The mutants differed from the wild phage in being more sensitive to photodynamic inactivation and EDTA shock. They showed high frequency towards rapid lysis mutation following exposure of free phage particles to high temperature.  相似文献   

12.
Summary Eight strains devoid of homocitrate synthase activity were found among lysine requiring mutants of the yeast Saccharomycopsis lipolytica. Genetic analysis of these strains showed that they were all affected at the same locus LYS 1. Three lines of evidence suggest that this locus defines a structural gene for homocitrate synthase. First, the mutations show various degrees of intragenic complementation; it could be shown in some cases that the hybrid enzyme formed in vivo displayed modified properties in vitro. Second, reversion of some of these mutations can result in a modified enzyme (desensitized). Third, a feedback mutant of homocitrate synthase was directly isolated from the wild type strain, and shown to carry a single mutation at or near LYS 1.We also present here the first attempts at genetic fine mapping in Saccharomycopsis lipolytica.Abbreviations used lys lysine - arg arginine - ade adenine - ura uracile - TDL 4,5-transdehydrolysine - Sm Saccharomycopsis - KR kilorads Part of a thesis submitted by C.G. to the Université de Paris VI, Paris, France  相似文献   

13.
Scheller J  Schürer A  Rudolph C  Hettwer S  Kramer W 《Genetics》2000,155(3):1069-1081
We have characterized the MPH1 gene from Saccharomyces cerevisiae. mph1 mutants display a spontaneous mutator phenotype. Homologs were found in archaea and in the EST libraries of Drosophila, mouse, and man. Mph1 carries the signature motifs of the DEAH family of helicases. Selected motifs were shown to be necessary for MPH1 function by introducing missense mutations. Possible indirect effects on translation and splicing were excluded by demonstrating nuclear localization of the protein and splicing proficiency of the mutant. A mutation spectrum did not show any conspicuous deviations from wild type except for an underrepresentation of frameshift mutations. The mutator phenotype was dependent on REV3 and RAD6. The mutant was sensitive to MMS, EMS, 4-NQO, and camptothecin, but not to UV light and X rays. Epistasis analyses were carried out with representative mutants from various repair pathways (msh6, mag1, apn1, rad14, rad52, rad6, mms2, and rev3). No epistatic interactions were found, either for the spontaneous mutator phenotype or for MMS, EMS, and 4-NQO sensitivity. mph1 slightly increased the UV sensitivity of mms2, rad6, and rad14 mutants, but no effect on X-ray sensitivity was observed. These data suggest that MPH1 is not part of a hitherto known repair pathway. Possible functions are discussed.  相似文献   

14.
15.
Two genes of Aspergillus nidulans are known to function in UV mutagenesis, but have been assigned to different epistasis groups: uvsC, which is also required for meiosis and mitotic recombination, and uvsI, which may have no other function. To clarify their role in error-prone repair and to investigate their interaction, uvsI and uvsC single and uvsI;uvsC double mutant strains were further tested for mutagen sensitivities and characterized for effects on mutation. Spontaneous and induced frequencies were compared in forward and reverse mutation assays. All results confirmed that uvsI and uvsC are members of different epistasis groups, and demonstrated that these uvs mutants have very different defects in UV mutagenesis. The uvsI strains showed wild-type frequencies in all forward mutation tests, but greatly reduced spontaneous and UV-induced reversion of some, but not other, point mutations. In contrast, uvsC had similar effects in all assay systems: namely pronounced mutator effects and greatly reduced UV mutagenesis. Interestingly, the uvsI;uvsC double mutant strains differed from both single mutants; they clearly showed synergism for all types of reversion tested: none were ever obtained spontaneously, nor after induction by UV or EMS (ethylmethane sulfonate). Based on these results, we conclude that uvsI is active in a mutation-specific, specialized error-prone repair process in Aspergillus. In contrast, uvsC, which is now known to show sequence homology to recA, has a basic function in mutagenic UV repair in addition to recombinational repair, similar to recA of Escherichia coli. Received: 23 September 1996 / Accepted: 2 December 1996  相似文献   

16.
Oshima T  Takano I 《Genetics》1980,96(4):841-857
Reverse and forward mutation, induced by photoaddition of 8-methoxypsoralen (8-MOP) and 3-carbethoxypsoralen (3-CPs) or ultraviolet light (UV), are reduced in three pso mutants of Saccharomyces cerevisiae. The pso1–1 strain exhibits a lower frequency of spontaneous reversion (antimutator) and is almost entirely unaffected by the three agents in both the haploid and diploid states. The pso2–1 strain demonstrates very reduced frequencies of 8-MOP and 3-CPs plus 365 nm radiation-induced mutations in happloid and diploid cells. UV-induced mutations are slightly reduced, whereas survival is almost normal. The pso3–1 strain is mutable by 8-MOP and 3-CPs photoaddition only in the low-dose range. After UV treatment, survival of pso3–1 is nearly normal, whereas the frequencies of induced mutants are diminished as compared to the normal PSO+. An analogue of adenine, 6-N-hydroxyaminopurine, is capable of inducing reversions in wild type, as well as in pso and rad6–1 mutant strains, indicating that this drug may act as a direct mutagen in yeast. The comparison of photoaddition of the bifunctional agent (8-MOP) to that of the monofunctional one (3-CPs) confirms that cross-links, as well as monoadditions, are mutagenic in S. cerevisiae. Repair, of the recombinational type, taking place in diploid cells or in haploid cells in G2 phase leads to higher survival, but appears to be error-free.  相似文献   

17.
Summary Spontaneous and UV-induced mitotic recombination was compared in diploids homozygous for rad6-1 mutation and in the wild-type strain carrying heterozygous markers for detecting gene conversion (hom2-1, hom2-2) and crossing over (adel, ade2). Diploids homozygous for rad6-1 mutation were characterised by an elevated level of spontaneous and UV-induced mitotic recombination, particularly the intergenic events. Exposure of UV-irradiated strains to visible light resulted in an increased survival and decreased level of mitotic recombination. Liquid holding (LH) differentially affected frequency of mitotic intergenic and intragenic recombination in mutant and wild-type strains, being without any significant effect on cell survival. In a mutant strain intragenic recombination is significantly increased, intergenic only slightly. In the wild-type strain intragenic recombination is slightly decreased but intergenic is not changed by LH. Visible light applied after LH had no effect on survival and mitotic recombination in the wild type, while in the mutant strain photoreactivability of survival was fully preserved and accompanied by a decrease in the frequency of intragenic and intergenic recombination. The results suggest that metabolic pathways responsible for restoring cell survival are independent of or only partly overlapping with those concerning recombination events.  相似文献   

18.
Summary The mutation frequency of DNA polymerase mutants of phage T4 treated with ethyl methanesulfonate (EMS) then incubated in the presence and absence of caffeine was studied using an rII reversion system. The DNA polymerase mutation is shown to be antimutagenic for EMS induction of reversions which occur by a GC to AT transition. Caffeine acts as a comutagen for the induction by EMS of mutant phages and produces a significant increase in the frequency of reversions from rII to r+. Caffeine is slightly mutagenic for the phage strain carrying the wild type polymerase and inhibits the action of the 35 exonuclease function of T4 DNA polymerase as measured in vitro. These findings suggest that caffeine acts by directly influencing nucleotide selection or the editing function of the DNA polymerase.  相似文献   

19.
It was investigated whether there was a critical degree of dryness for induction of genetic changes by drying. Saccharomyces cerevisiae cells were dried in air of 0, 33, 53 and 76% relative humidity (RH). The frequencies of mitotic recombination at ade2, of gene conversion at leul, and of gene mutation at can1 were measured in X2447, XS1473 and S288C strains, respectively.After the cells had been dried at 0% RH for 4 h the frequencies of the genetic changes at ade2, leul and can1 were, respectively, 56, 7 and 3.5 times higher than each spontaneous frequency. Induction rates, defined as the frequencies of the induced genetic changes per unit time (1 h) of drying, were greatly decreased with increase in RH. Partial drying in air of 76% RH up to 4 and 8 h induced no genetic change at ade2 and leul, respectively. It was concluded, therefore, that drying at a certain RH between 53 and 76% gave the critical degree of dryness of cells for the induction of the genetic changes. The water contents of cells (g water per g dry material) were 12% at 53% RH and 21% at 76% RH, whereas the water content of native cells was 212%. Removal of a large amount of cellular water had no effect on the induction of the genetic changes.UV sensitivity of partially dried cells of X2447 for the induction of the genetic change at ade2 drastically increased with decrease in RH between 76 and 53%. The drastic change in the UV sensitivity suggested that photochemical reactivity of DNA of chromosome XV, in which the ade2 locus is located, changed between 76 and 53% RH. It seems that the genetic changes were induced only in the low RH region where DNA in vivo had a different photochemical reactivity.  相似文献   

20.
SYNOPSIS. Mutant strains were chemically induced by treatment with N-methyl-N′-nitro-N-nitrosoguanidine (NTG) and UV irradiation. UV and NTG mutation rates were obtained that were both consistent with the organism being haploid. Three types of mutants were produced: (a) strains deficient in both β- and γ-carotene, the only carotenoids found in the wild type; phenotypes include albinos (translucent, dull white, “snow white”) and cream-colored on agar as compared to the yellow-orange color of wild type colonies; (b) strains requiring adenine, guanine or cytosine in addition to the minimal medium for growth; (c) mutants that grow at a rate less than 40% of the wild type in minimal medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号