首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The immunohistochemical reaction of monoclonal as well as polyclonal antibodies against cytochrome c oxidase (COX) subunits with serial sections of normal human skeletal muscle was investigated. The stronger reactivity of polyclonal antibodies to COX subunits II-III and VIIbc with type I as compared to type II fibres, correlated well with the higher histochemical reactivity of NADH dehydrogenase, succinate dehydrogenase and cytochrome c oxidase in type I fibres. In contrast an almost exclusive reaction of a monoclonal antibody against subunit IV with type I fibre and a preponderant reaction of a polyclonal antibody against subunits Vab with type II fibres was obtained. Antibodies against subunits I, Vb and VIc did not reveal a fibre-type-specific reactivity. The data indicate in human muscle the occurrence of fibre type-specific isozymes of cytochrome c oxidase differing in subunits IV and Va or Vb.  相似文献   

2.
Flux control of cytochrome c oxidase in human skeletal muscle   总被引:3,自引:0,他引:3  
In the present work, by titrating cytochrome c oxidase (COX) with the specific inhibitor KCN, the flux control coefficient and the metabolic reserve capacity of COX have been determined in human saponin-permeabilized muscle fibers. In the presence of the substrates glutamate and malate, a 2.3 +/- 0.2-fold excess capacity of COX was observed in ADP-stimulated human skeletal muscle fibers. This value was found to be dependent on the mitochondrial substrate supply. In the combined presence of glutamate, malate, and succinate, which supported an approximately 1.4-fold higher rate of respiration, only a 1.4 +/- 0.2-fold excess capacity of COX was determined. In agreement with these findings, the flux control of COX increased, in the presence of the three substrates, from 0.27 +/- 0.03 to 0.36 +/- 0.08. These results indicate a tight in vivo control of respiration by COX in human skeletal muscle. This tight control may have significant implications for mitochondrial myopathies. In support of this conclusion, the analysis of skeletal muscle fibers from two patients with chronic progressive external ophthalmoplegia, which carried deletions in 11 and 49% of their mitochondrial DNA, revealed a substantially lowered reserve capacity and increased flux control coefficient of COX, indicating severe rate limitations of oxidative phosphorylation by this enzyme.  相似文献   

3.
Cytochrome c oxidase (COX) was isolated from bovine smooth muscle (rumen), and compared with the enzyme from bovine liver, heart and skeletal muscle. A new isozyme of COX was found to be expressed in smooth muscle, which differs from the isozyme in liver and heart or skeletal muscle. SDS-PAGE as well as N-terminal amino acid sequencing of separated subunits from gel bands revealed the expression of the liver isoforms for subunits VIa and VIII and of the heart isoform for subunits VIIa in COX from smooth muscle.  相似文献   

4.
The generation of a monoclonal antibody specific to xanthine oxidase and its use in the distribution of the enzyme in human tissue is described. Xanthine oxidase was purified from human and bovine milk by a rapid method, allowing for minimal proteolytic degradation, and the purified enzyme preparations were used for the immunization of BALB/c mice as well as for the subsequent selection of hybridomas. The hybridoma clone X1–7, IgG (2a, -light chain) was selected for further analysis and demonstrated to precipitate xanthine oxidase from human liver and skeletal muscle extracts. As determined by SDS-polyacrylamide gel electrophoresis of eluates from affinity chromatography, the X1–7 antibody bound to a main protein of 155 kDa, from human milk and skeletal muscle, and to proteins of 155, 143 and 95 kDa from human liver. Immunohistochemical studies, using two of the monoclonal antibodies with differing epitope specificity, revealed xanthine oxidase to be localized mainly in the vascular smooth muscle cells but also in a proportion of endothelial cells of capillaries and smaller vessels in both human cardiac and skeletal muscle. Immunoreactivity was additionally observed in human macrophages and mast cells. The results of the present study confirm previous reports of the presence of xanthine oxidase in capillary endothelial cells, but also demonstrates additional localization of the enzyme in vascular smooth muscle cells, macrophages and mast cells. The current findings verify that the distribution of xanthine oxidase in human tissue includes cardiac and skeletal muscle.  相似文献   

5.
Cytochrome c oxidase was isolated from brown fat tissue of the rat and compared with the isozymes from rat liver and heart, which differ at least in subunits VIa and VIII. ELISA titrations of COX from the three tissues with monospecific antisera to all 13 subunits of the rat liver enzyme showed differences between the three enzymes. The N-terminal amino-acid sequence analysis of subunits VIa and VIII from SDS-PAGE gel bands of the three enzymes indicates the occurrence of three different isozymes in the rat. N-terminal amino-acid sequence analysis of subunits VIa and VIII from cytochrome c oxidase of bovine and human heart demonstrates also species-specific differences in the expression of the 'liver-type' and 'heart-type' of subunits VIa and VIII.  相似文献   

6.
The mitochondrial enzyme cytochrome c oxidase (COX) in eukaryotes consists of at least seven subunits, three of which (I-III) are encoded by mitochondrial DNA (mitDNA) and the others (IV-VII) by the nuclear genome. There is increasing evidence that COX in mammals exists in multiple tissue-specific forms, presumably specified by nuclearly encoded subunits. We performed immunologic studies in human cardiac and skeletal muscle, using a monoclonal antibody raised against subunit IV of COX purified from human cardiac muscle. In immunotitration studies, the antibody bound with high affinity to mitochondria from cardiac muscle, but reacted only weakly with mitochondria from skeletal muscle. Similarly, immunocytochemical studies showed prominent mitochondrial staining in frozen sections of heart, but no staining in sections of mature skeletal muscle. Although this antibody did not stain mitochondria in mature skeletal muscle, it clearly stained mitochondria in myoblasts and immature myotubes of human muscle cultures, suggesting that mitochondria in immature muscle cells are different from those in mature muscle, and similar to heart mitochondria. Immunotitration data using either native or denatured COX protein from heart or skeletal muscle showed similar immunoreactivity. These studies indicate that the epitope for recognition by this antibody is exposed in mitochondria from heart and immature muscle cells, but masked in mitochondria from mature skeletal muscle.  相似文献   

7.
The gastrocnemius, a fast-twitch white muscle, and the soleus, a slow-twitch red muscle, were studied in A/J mice. The specific activities of the lysosomal hydrolases, beta-D-glucuronidase, hexosaminidase, beta-D-galactosidase and arylsulphatase, the inner-mitochondrial-membrane enzyme cytochrome c oxidase, and the outer-mitochondrial-membrane enzyme monoamine oxidase, were greater in the soleus than in the gastrocnemius. The specific activities of the lysosomal hydrolases and cytochrome c oxidase in the gastrocnemius and soleus were substantially higher in male mice than in female mice. Orchiectomy abolished this sex difference. Testosterone increased the activities of the lysosomal hydrolases and cytochrome c oxidase and coincidentally induced muscle hypertrophy and an accretion of protein and RNA, but total DNA remained constant. Monoamine oxidase was unaffected by sex, orchiectomy and testosterone. These findings indicate that endogenous androgens regulate the activity of enzymes associated with lysosomes and the inner mitochondrial membrane, as well as muscle fibre growth in mouse skeletal muscle.  相似文献   

8.
Microphotometric assay media for the measurement of succinate dehydrogenase (SDH) and cytochrome oxidase activities in sections of human skeletal muscle have been developed. The optimal constitution of these media was determined experimentally. Factors investigated include the effects of substrate concentration, pH, use of different electron acceptors and electron donors, influence of intermediate electron carriers and tissue-stabilizing agents, effects of inhibitors, the extent of endogenous and non-specific reactions and the linearity of the reactions during the time course of the assays. Optimal assay media (SDH) contained 130 mM succinate, 1.5 mM Nitro Blue tetrazolium, 0.2 mM phenazine methosulphate and 1.0 mM sodium azide in 0.1 m phosphate buffer, pH7.0. Cytochrome oxidase was optimally assayed in media containing 4 mM diaminobenzidine and 100 microns cytochrome c. Reactions in individual muscle fibers were found to be linear for incubation times up to 10 min in SDH assays and for more than 15 min in cytochrome oxidase determinations. Some potential uses of these microphotometric assays in the investigation of human metabolic muscle disorders are discussed.  相似文献   

9.
10.
This study determined the role of body temperature during exercise on cytochrome-c oxidase (CytOx) activity, a marker of mitochondrial content, and mitochondrial heat shock protein 70 (mtHSP70), which is required for import of nuclear-coded preproteins. Male, 10-wk-old, Sprague-Dawley rats exercised identically for 9 wk in ambient temperatures of 23 degrees C (n = 10), 8 degrees C with wetted fur (n = 8), and 4 degrees C with wetted fur and fan (n = 7). These conditions maintained exercising core temperature (T(c)) at 40.4, 39.2, or 38.0 degrees C (resting temperature), respectively. During weeks 3-9, exercisers ran 5 days/wk up a 6% grade at 20 m/min for 60 min. Animals were housed at 23 degrees C. Gastrocnemius CytOx activity in T(c)=38.0 degrees C (83.5 +/- 5.5 microatoms O x min(-1) x g wet wt(-1)) was greater than all other groups (P < 0.05), exceeding sedentary (n = 7) by 73.2%. T(c) of 40.4 and 39.2 degrees C also were higher than sedentary by 22.4 and 37.4%, respectively (P < 0.05). Quantification of CytOx content verified that the increased activity was due to an increase in protein content. In extensor digitorum longus, a nonactive muscle, CytOx was not elevated in T(c) = 38.0 degrees C. mtHSP70 was significantly elevated in gastrocnemius of T(c) = 38.0 degrees C compared with sedentary (P < 0.05) but was not elevated in extensor digitorum longus (P > 0.05). The data indicate that decreasing exercise T(c) may enhance mitochondrial biogenesis and that mtHSP70 expression is not dependent on temperature.  相似文献   

11.
Human cytochrome c oxidase was isolated in an active form from heart and from skeletal muscle by a fast, small-scale isolation method. The procedure involves differential solubilisation of the oxidase from mitochondrial fragments by laurylmaltoside and KCl, followed by size-exclusion high-performance liquid chromatography. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate showed differences between the subunit VI region of cytochrome c oxidases from human heart and skeletal muscle, suggesting different isoenzyme forms in the two organs. This finding might be of importance in explaining mitochondrial myopathy which shows a deficiency of cytochrome c oxidase in skeletal muscle only. In SDS polyacrylamide gel electrophoresis most human cytochrome c oxidase subunits migrated differently from their bovine counterparts. However, the position of subunits III and IV was the same in the human and in the bovine enzymes. The much higher mobility of human cytochrome c oxidase subunit II is explained by a greater hydrophobicity of this polypeptide than of that of the subunit II of the bovine enzyme.  相似文献   

12.
l-2-Hydroxyglutaric (LGA) and d-2-hydroxyglutaric (DGA) acids are the characteristic metabolites accumulating in the neurometabolic disorders known as l-2-hydroxyglutaric aciduria and d-2-hydroxyglutaric aciduria, respectively. Although these disorders are predominantly characterized by severe neurological symptoms, the neurotoxic mechanisms of brain damage are virtually unknown. In this study we have evaluated the role of LGA and DGA at concentrations ranging from 0.01 to 5.0 mM on various parameters of energy metabolism in cerebral cortex slices and homogenates of 30-day-old Wistar rats, namely glucose uptake, CO2 production and the respiratory chain enzyme activities of complexes I to IV. DGA significantly decreased glucose utilization (2.5 and 5.0 mM) by brain homogenates and CO2 production (5 mM) by brain homogenates and slices, whereas LGA had no effect on either measurement. Furthermore, DGA significantly inhibited cytochrome c oxidase activity (complex IV) (EC 1.9.3.1) in a dose-dependent manner (35–95%) at doses as low as 0.5 mM, without compromising the other respiratory chain enzyme activities. In contrast, LGA did not interfere with these activities. Our results suggest that the strong inhibition of cytochrome c oxidase activity by increased levels of DGA could be related to the neurodegeneration of patients affected by d-2-hydroxyglutaric aciduria.  相似文献   

13.
L-2-Hydroxyglutaric (LGA) and D-2-hydroxyglutaric (DGA) acids are the characteristic metabolites accumulating in the neurometabolic disorders known as L-2-hydroxyglutaric aciduria and D-2-hydroxyglutaric aciduria, respectively. Although these disorders are predominantly characterized by severe neurological symptoms, the neurotoxic mechanisms of brain damage are virtually unknown. In this study we have evaluated the role of LGA and DGA at concentrations ranging from 0.01 to 5.0 mM on various parameters of energy metabolism in cerebral cortex slices and homogenates of 30-day-old Wistar rats, namely glucose uptake, CO(2) production and the respiratory chain enzyme activities of complexes I to IV. DGA significantly decreased glucose utilization (2.5 and 5.0 mM) by brain homogenates and CO(2) production (5 mM) by brain homogenates and slices, whereas LGA had no effect on either measurement. Furthermore, DGA significantly inhibited cytochrome c oxidase activity (complex IV) (EC 1.9.3.1) in a dose-dependent manner (35-95%) at doses as low as 0.5 mM, without compromising the other respiratory chain enzyme activities. In contrast, LGA did not interfere with these activities. Our results suggest that the strong inhibition of cytochrome c oxidase activity by increased levels of DGA could be related to the neurodegeneration of patients affected by D-2-hydroxyglutaric aciduria.  相似文献   

14.
The binding of TNP-ATP (2 or 3-O-(2,4,6-trinitrophenyl)-ATP) to cytochrome c oxidase (COX) from bovine heart and liver and to the two-subunit COX of Paracoccus denitrificans was measured by its change of fluorescence. Three binding sites, two with high (dissociation constant Kd = 0.2 µM) and one with lower affinity (Kd = 0.9 µM), were found at COX from bovine heart and liver, while the Paracoccus enzyme showed only one binding site (Kd = 3.6 µM). The binding of [35S]ATPaS was measured by equilibrium dialysis and revealed seven binding sites at the heart enzyme (Kd = 7.5 µM) and six at the liver enzyme (Kd = 12 µM). The Paracoccus enzyme had only one binding site (Kd = 16 µM). The effect of variable intraliposomal ATP/ADP ratios, but at constant total concentration of [ATP + ADP] = 5 mM, on the H+/e- stoichiometry of reconstituted COX from bovine heart and liver were studied. Above 98% ATP the H+/e- stoichiometry of the heart enzyme decreased to about half of the value measured at 100% ATP. In contrast, the H+/e- stoichiometry of the liver enzyme was not influenced by the ATP/ADP ratio. It is suggested that high intramitochondrial ATP/ADP ratios, corresponding to low cellular work load, will decrease the efficiency of energy transduction and result in elevated thermogenesis for the maintenance of body temperature. (Mol Cell Biochem 174: 131–135, 1997)  相似文献   

15.
16.
17.
  • 1.1. The pyridoxal phosphate (PLP) modification of the lysine amino groups in cytochrome c causes decrease in the reaction rate with cytochrome c oxidase.
  • 2.2. The rate constants for (PLP);-cyt. c, PLP(Lys 86)-cyt. c, PLP(Lys 79)-cyt. c and native cytochrome c (at pH 7.4, 1=0.02) are 3.6 × 10−3'sec-', 5.5 × 10−3, 5.2 × 10−3-'sec−1 and 9.8 × 10−3sec−1, respectively.
  • 3.3. In spite of the same positive charge of singly PLP-cytochromes c the reaction between PLP(Lys 86)-cyt. c and cyt. c oxidase exhibits the ionic strength dependence that differs from those of the PLP(Lys 79)-cyt. c.
  • 4.4. The rate constants at zero and infinite ionic strength for PLP(Lys 86)-cyt. c is 2-fold less than that for PLP(Lys 79)-cyt. c.
  • 5.5. The positively charged cytochrome c lysines 86 and 79 form two from four or five predicted complementary charge interactions with carboxyl groups on cytochrome c oxidase.
  相似文献   

18.
Pulsed cytochrome c oxidase   总被引:1,自引:0,他引:1  
The identification of two functionally distinct states, called pulsed and resting, has led to a number of investigations on the conformational variants of the enzyme. However, the catalytic properties of cytochrome oxidase may depend on a number of experimental conditions related to the solvent as well as to the protocol followed to determine the turnover number of the enzyme. This paper reports results which illustrate that the steady-state differences between pulsed and resting oxidase may, or may not, be detected depending on experimental conditions.  相似文献   

19.
Human cytochrome c oxidase was purified in a fully active form from heart and skeletal muscle. The enzyme was selectively solubilised with octylglucoside and KCl from submitochondrial particles followed by ammonium sulphate fractionation. The presteady-state and steady-state kinetic properties of the human cytochrome c oxidase preparations with either human cytochrome c or horse cytochrome c were studied spectrophotometrically and compared with those of bovine heart cytochrome c oxidase. The interaction between human cytochrome c and human cytochrome c oxidase proved to be highly specific. It is proposed that for efficient electron transfer to occur, a conformational change in the complex is required, thereby shifting the initially unfavourable redox equilibrium. The very slow presteady-state reaction between human cytochrome c oxidase and horse cytochrome c suggests that, in this case, the conformational change does not occur. The proposed model was also used to explain the steady-state kinetic parameters under various conditions. At high ionic strength (I = 200 mM, pH 7.4), the kcat was highly dependent on the type of oxidase and it is proposed that the internal electron transfer is the rate-limiting step. The kcat value of the 'high-affinity' phase, observed at low ionic strength (I = 18 mM, pH 7.4), was determined by the cytochrome c/cytochrome c oxidase combination applied, whereas the Km was highly dependent only on the type of cytochrome c used. Our results suggest that, depending on the cytochrome c/cytochrome c oxidase combination, either the dissociation of ferricytochrome c or the internal electron transfer is the rate-limiting step in the 'high-affinity' phase at low ionic strength. The 'low-affinity' kcat value was not only determined by the type of oxidase used, but also by the type of cytochrome c. It is proposed that the internal electron-transfer rate of the 'low-affinity' reaction is enhanced by the binding of a second molecule of cytochrome c.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号