首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
2.
Brandström M  Ellegren H 《Genetics》2007,176(3):1691-1701
It is increasingly recognized that insertions and deletions (indels) are an important source of genetic as well as phenotypic divergence and diversity. We analyzed length polymorphisms identified through partial (0.25x) shotgun sequencing of three breeds of domestic chicken made by the International Chicken Polymorphism Map Consortium. A data set of 140,484 short indel polymorphisms in unique DNA was identified after filtering for microsatellite structures. There was a significant excess of tandem duplicates at indel sites, with deletions of a duplicate motif outnumbering the generation of duplicates through insertion. Indel density was lower in microchromosomes than in macrochromosomes, in the Z chromosome than in autosomes, and in 100 bp of upstream sequence, 5'-UTR, and first introns than in intergenic DNA and in other introns. Indel density was highly correlated with single nucleotide polymorphism (SNP) density. The mean density of indels in pairwise sequence comparisons was 1.9 x 10(-4) indel events/bp, approximately 5% the density of SNPs segregating in the chicken genome. The great majority of indels involved a limited number of nucleotides (median 1 bp), with A-rich motifs being overrepresented at indel sites. The overrepresentation of deletions at tandem duplicates indicates that replication slippage in duplicate sequences is a common mechanism behind indel mutation. The correlation between indel and SNP density indicates common effects of mutation and/or selection on the occurrence of indels and point mutations.  相似文献   

3.
4.
Khan MA  Han Y  Zhao YF  Korban SS 《Gene》2012,494(2):196-201
EST data generated from 14 apple genotypes were downloaded from NCBI and mapped against a reference EST assembly to identify Single Nucleotide Polymorphisms (SNPs). Mapping of these SNPs was undertaken using 90% of sequence similarity and minimum coverage of four reads at each SNP position. In total, 37,807 SNPs were identified with an average of one SNP every 187 bp from a total of 6888 unique EST contigs. Identified SNPs were checked for flanking sequences of ≥ 60 bp along both sides of SNP alleles for reliable design of a custom high-throughput genotyping assay. A total of 12,299 SNPs, representing 6525 contigs, fit the selected criterion of ≥ 60 bp sequences flanking a SNP position. Of these, 1411 SNPs were validated using four apple genotypes. Based on genotyping assays, it was estimated that 60% of SNPs were valid SNPs, while 26% of SNPs might be derived from paralogous regions.  相似文献   

5.
Single-nucleotide polymorphisms (SNPs) are the most frequent variations in the genome of any organism. SNP discovery approaches such as resequencing or data mining enable the identification of insertion deletion (indel) polymorphisms. These indels can be treated as biallelic markers and can be utilized for genetic mapping and diagnostics. In this study 655 indels have been identified by resequencing 502 maize (Zea mays) loci across 8 maize inbreds (selected for their high allelic variation). Of these 502 loci, 433 were polymorphic, with indels identified in 215 loci. Of the 655 indels identified, single-nucleotide indels accounted for more than half (54.8%) followed by two- and three-nucleotide indels. A high frequency of 6-base (3.4%) and 8-base (2.3%) indels were also observed. When analysis is restricted to the B73 and Mo17 genotypes, 53% of the loci analyzed contained indels, with 42% having an amplicon size difference. Three novel miniature inverted-repeat transposable element (MITE)-like sequences were identified as insertions near genes. The utility of indels as genetic markers was demonstrated by using indel polymorphisms to map 22 loci in a B73 × Mo17 recombinant inbred population. This paper clearly demonstrates that the resequencing of 3 EST sequence and the discovery and mapping of indel markers will position corresponding expressed genes on the genetic map.  相似文献   

6.
Single nucleotide polymorphisms (SNPs) including insertion/deletions (indels) serve as useful and informative genetic markers. The availability of high-throughput and inexpensive SNP typing systems has increased interest in the development of SNP markers. After fragments of genes were amplified with primers derived from 110 soybean GenBank ESTs, sequencing data of PCR products from 15 soybean genotypes from Korea and the United States were analyzed by SeqScape software to find SNPs. Among 35 gene fragments with at least one SNP among the 15 genotypes, SNPs occurred at a frequency of 1 per 2,038 bp in 16,302 bp of coding sequence and 1 per 191 bp in 16,960 bp of noncoding regions. This corresponds to a nucleotide diversity (theta) of 0.00017 and 0.00186, respectively. Of the 97 SNPs discovered, 78 or 80.4% were present in the six North American soybean mapping parents. The addition of "Hwaeomputkong," which originated from Japan, increased the number to 92, or 94.8% of the total number of SNPs present among the 15 genotypes. Thus, Hwaeomputkong and the six North American mapping parents provide a diverse set of soybean genotypes that can be successfully used for SNP discovery in coding DNA and closely associated introns and untranslated regions.  相似文献   

7.
Mining single-nucleotide polymorphisms from hexaploid wheat ESTs.   总被引:20,自引:0,他引:20  
Single-nucleotide polymorphisms (SNPs) represent a new form of functional marker, particularly when they are derived from expressed sequence tags (ESTs). A bioinformatics strategy was developed to discover SNPs within a large wheat EST database and to demonstrate the utility of SNPs in genetic mapping and genetic diversity applications. A collection of > 90000 wheat ESTs was assembled into contiguous sequences (contigs), and 45 random contigs were then visually inspected to identify primer pairs capable of amplifying specific alleles. We estimate that homoeologue sequence variants occurred 1 in 24 bp and the frequency of SNPs between wheat genotypes was 1 SNP/540 bp (theta = 0.0069). Furthermore, we estimate that one diagnostic SNP test can be developed from every contig with 10-60 EST members. Thus, EST databases are an abundant source of SNP markers. Polymorphism information content for SNPs ranged from 0.04 to 0.50 and ESTs could be mapped into a framework of microsatellite markers using segregating populations. The results showed that SNPs in wheat can be discovered in ESTs, validated, and be applied to conventional genetic studies.  相似文献   

8.
9.
10.
A panel of 17 tetraploid and 11 diploid potato genotypes was screened by comparative sequence analysis of polymerase chain reaction (PCR) products for single nucleotide polymorphisms (SNPs) and insertion-deletion polymorphisms (InDels), in regions of the potato genome where genes for qualitative and/or quantitative resistance to different pathogens have been localized. Most SNP and InDel markers were derived from bacterial artificial chromosome (BAC) insertions that contain sequences similar to the family of plant genes for pathogen resistance having nucleotide-binding-site and leucine-rich-repeat domains (NBS-LRR-type genes). Forty-four such NBS-LRR-type genes containing BAC-insertions were mapped to 14 loci, which tag most known resistance quantitative trait loci (QTL) in potato. Resistance QTL not linked to known resistance-gene-like (RGL) sequences were tagged with other markers. In total, 78 genomic DNA fragments with an overall length of 31 kb were comparatively sequenced in the panel of 28 genotypes. 1498 SNPs and 127 InDels were identified, which corresponded, on average, to one SNP every 21 base pairs and one InDel every 243 base pairs. The nucleotide diversity of the tetraploid genotypes (pi = 0.72 x 10(-3)) was lower when compared with diploid genotypes (pi = 2.31 x 10(-3)). RGL sequences showed higher nucleotide diversity when compared with other sequences, suggesting evolution by divergent selection. Information on sequences, sequence similarities, SNPs and InDels is provided in a database that can be queried via the Internet.  相似文献   

11.
Three factors may have reduced the diversity at both individual gene and whole genome levels in cultivated peach: its self-compatible mating system, the narrow genetic basis of most commercial cultivars, and the recent strong selection towards agronomically interesting traits. Previous diversity analyses with markers such as simple sequence repeats (SSRs) have revealed low levels of genetic variability. Here, we sequenced 23 genome-wide distributed DNA fragments in 47 occidental peach varieties, also observing reduced variability levels. On average, there was one single nucleotide polymorphism (SNP) every 598 bp and one indel every 4,189 bp. As expected, variability was higher in non-coding than in coding regions (one SNP every 390 non-coding bp versus one in 1,850 bp in coding DNA). In general, SNPs were observed at relatively high frequency, mean minor allele frequency?=?0.225, meaning that a large proportion of the SNPs discovered by sequencing similar germplasm will be useful for other purposes, such as association mapping. The average heterozygosity of the varieties was 0.28, with a low correlation between SSR and SNP heterozygosity. The whole sequence of two candidate genes, a pectate lyase 1 candidate for fruit firmness (CGPAA2668) and a sucrose synthase 1 candidate for sugar content (CGPPB6189), in the 47 varieties revealed that they both may have suffered a process of balancing selection.  相似文献   

12.
In alfalfa (Medicago sativa), an autotetraploid forage legume, stem length is a major component of forage yield, quality and competing ability. In this species, flowering date is not a breeding criterion. Association mapping based on a candidate gene approach has given good results in plants, including autotetraploid species for which genetic analyses are complex. The role of a CONSTANS-LIKE gene, identified as a candidate for stem elongation and flowering date in the model legume M. truncatula, was tested for association with the same traits in alfalfa. Four hundred genotypes from ten cultivars were evaluated for stem height and flowering date in two locations during 4 years. They were genotyped with simple sequence repeat markers and a low structuration was noticed. Primers were designed to amplify and sequence two regions of the alfalfa gene homologous to CONSTANS-LIKE. Single nucleotide polymorphisms (SNPs) were detected and their allelic dose in each genotype was scored. Linkage disequilibrium within CONSTANS-LIKE rapidly decreased as expected. Eight SNPs with a frequency above 10% were detected over 1,010 bp (one SNP every 126 bp on average) in the 400 genotypes. This number was lower than observed in a neutral gene (a SNP every 31 bp on average). Highly significant associations of three SNPs to flowering date and stem height were identified. Each SNP explained up to 4.2% of the genetic variance. Thus, as in the model species, the CONSTANS-LIKE gene was shown to be involved in flowering date and stem height in alfalfa.  相似文献   

13.
In order to develop a large set of single-nucleotide polymorphisms (SNPs) in Cryptomeria japonica, for a wide range of applications, we adopted a systematic EST (expressed sequence tags) re-sequencing approach. We examined a group of four genotypes comprising parents of a mapping population as well as representatives of two main lines from natural populations. We sequenced 5,170 gene fragments, representing analysis of over 1.3?Mb of DNA sequences in C. japonica. This analysis leads to the discovery of 13,413 SNPs in 3,744 amplicons, with an average of one SNP for every 101.0?bp (one SNP for every 78.3?bp in introns and for every 106.7?bp in exon regions). Nucleotide diversity in C. japonica (???=?0.0045) was found to be similar to values recorded in highly polymorphic forest tree species such as pine. We also validated the use of the SNPs as molecular markers for genetic diversity studies using the high throughput SNP genotyping platform GoldenGate. From 1,536 candidate SNP sites tested, 1,164 (75.8?%) were confirmed to be polymorphic. We anticipate that the genome-wide SNP markers reported here will be useful for evaluating the species?? range-wide genetic structure and in marker-assisted selection used as part of the C. japonica tree improvement program.  相似文献   

14.
Molecular characterization of the waxy locus in sorghum   总被引:1,自引:0,他引:1  
A comparison of approximately 4.5 kb of nucleotide sequence from the waxy locus (the granule-bound starch synthase I [GBSS I] locus) from a waxy line, BTxARG1, and a non-waxy line, QL39, revealed an extremely high level of sequence conservation. Among a total of 24 nucleotide differences and 9 indels, only 2 nucleotide changes resulted in altered amino acid residues. Protein folding prediction software suggested that one of the amino acid changes (Glu to His) may result in an altered protein structure, which may explain the apparently inactive GBSS I present in BTxARG1. This SNP was not found in the second waxy line, RTx2907, which does not produce GBSS I, and no other SNPs or indels were found in the approximately 4 kb of sequence obtained from RTx2907. Using one indel, the waxy locus was mapped to sorghum chromosome SBI-10, which is syntenous to maize chromosome 9; the waxy locus has been mapped to this maize chromosome. The distribution of indels in a diverse set of sorghum germplasm suggested that there are two broad types of non-waxy GBSS I alleles, each type comprising several alleles, and that the two waxy alleles in BTxARG1 and RTx2907 have evolved from one of the non-waxy allele types. The Glu/His polymorphism was found only in BTxARG1 and derived lines and has potential as a perfect marker for the BTxARG1 source of the waxy allele at the GBSS I locus. The indels correctly predicted the non-waxy phenotype in approximately 65% of diverse sorghum germplasm. The indels co-segregated perfectly with phenotype in two sorghum populations derived from crosses between a waxy and a non-waxy sorghum line, correctly identifying heterozygous lines. Thus, these indel markers or sequence-based SNP markers can be used to follow waxy alleles in sorghum breeding programs in selected pedigrees.  相似文献   

15.
Estimation of DNA sequence diversity in bovine cytokine genes   总被引:4,自引:0,他引:4  
DNA sequence variation provides the fundamental material for improving livestock through selection. In cattle, single nucleotide polymorphisms and small insertions/deletions (collectively referred to here as SNPs) have been identified in cytokine genes and scored in a reference population to determine linkage map positions. The aim of the present study was twofold: first, to estimate the SNP frequency in a reference population of beef cattle, and second, to determine cytokine haplotypes in a group of sires from commercial populations. Forty-five SNP markers in DNA segments from nine cytokine gene loci were analyzed in 26 reference parents. Comparison of all 52 haploid genomes at each PCR amplicon locus revealed an average of one SNP per 143 bp of sequence, whereas comparison of any two chromosomes identified heterozygous sites, on average, every 443 bp. The combination of these 45 SNP genotypes was sufficient to uniquely identify each of the 26 animals. The average number of haplotype alleles (4.4) per PCR amplicon (688 bp) and the percentage heterozygosity among founding parents (50%) were similar to those for microsatellite markers in the same population. For 49 sires from seven common breeds of beef cattle, SNP genotypes (1225 total) were obtained by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) at three amplicon loci. All three of the amplicon haplotypes were correctly deduced for each sire without the use of parent or progeny genotypes. The latter allows a wide range of genetic studies in commercial populations of cattle where genotypic information from relatives may not be available. Received: 16 June 2000 / Accepted: 23 August 2000  相似文献   

16.
17.
18.
Single-nucleotide polymorphisms (SNPs) and insertion–deletions (INDELs) are currently the important classes of genetic markers for major crop species. In this study, methods for developing SNP markers in rapeseed (Brassica napus L.) and their in silico mapping and use for genotyping are demonstrated. For the development of SNP and INDEL markers, 181 fragments from 121 different gene sequences spanning 86 kb were examined. A combination of different selection methods (genome-specific amplification, hetero-duplex analysis and sequence analysis) allowed the detection of 18 singular fragments that showed a total of 87 SNPs and 6 INDELs between 6 different rapeseed varieties. The average frequency of sequence polymorphism was estimated to be one SNP every 247 bp and one INDEL every 3,583 bp. Most SNPs and INDELs were found in non-coding regions. Polymorphism information content values for SNP markers ranged between 0.02 and 0.50 in a set of 86 varieties. Using comparative genetics data for B. napus and Arabidopsis thaliana, an allocation of SNP markers to linkage groups in rapeseed was achieved: a unique location was determined for seven gene sequences; two and three possible locations were found for six and four sequences, respectively. The results demonstrate the usefulness of existing genomic resources for SNP discovery in rapeseed.  相似文献   

19.
20.
R Kota  M Wolf  W Michalek  A Graner 《Génome》2001,44(4):523-528
Recent advances in DNA sequence analysis and the establishment of high-throughput assays have provided the framework for large-scale discovery and analysis of DNA sequence variation. In this context, single nucleotide polymorphisms (SNPs) are of particular interest. To initiate a systematic approach to develop an SNP map of barley (Hordeum vulgare L.), we have employed denaturing high-performance liquid chromatography (DHPLC) to analyse segregating SNP patterns in a doubled-haploid (DH) mapping population. To this end, SNPs between the parental genotypes were identified using a direct sequencing approach. Once a SNP was established between the parents, the optimal melting temperature of the PCR fragment containing the SNP was predicted for its analysis by DHPLC. Following the detection of the optimal temperature, the DH lines were analysed for the presence of either of the alleles. To test the utility of the analysis, data from previously mapped RFLP markers from which these SNPs were derived were compared. Results from these experiments indicate that DHPLC can be efficiently employed in analysing SNPs on a high-throughput scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号